
UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

SUPPORTING EFFECTIVE UNEXPECTED

EXCEPTION HANDLING IN WORKFLOW

MANAGEMENT SYSTEMS WITHIN

ORGANIZATIONAL CONTEXTS

Hernâni Raul Vergueiro Monteiro Cidade Mourão

DOUTORAMENTO EM INFORMÁTICA

(Engenharia Informática)

2007

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

SUPPORTING EFFECTIVE UNEXPECTED

EXCEPTION HANDLING IN WORKFLOW

MANAGEMENT SYSTEMS WITHIN

ORGANIZATIONAL CONTEXTS

Hernâni Raul Vergueiro Monteiro Cidade Mourão

DOUTORAMENTO EM INFORMÁTICA

(Engenharia Informática)

Tese orientada pelo Prof. Doutor Pedro Alexandre Mourão Antunes

2007

 i

Resumo

Os Sistemas de Gestão de Fluxos de Trabalho (SGFT) suportam a execução dos

processos organizacionais. Os processos são modelados com recurso a linguagens

de programação de alto nível que especificam a sequência de tarefas que a

organização tem de realizar e os recursos necessários. No entanto, os processos

organizacionais nem sempre têm um fluxo previsível que possibilite uma

modelação ajustada a todas as situações que se encontram no dia-a-dia das

organizações. Sempre que existe um desajuste entre o modelo e a realidade

organizacional encontrada pelos utilizadores, estamos na presença de uma

excepção. As excepções são eventos que se verificam com frequência e que

obrigam as organizações a se suportarem por sistemas flexíveis que permitam o

ajustamento às solicitações concretas que surgem no dia-a-dia. A flexibilidade

deve ser complementada com robustez de forma a assegurar a fiabilidade do

sistema mesmo em condições extremas. No nosso trabalho, introduzimos o

conceito de resiliência dos SGFT que contempla estas duas características:

robustez e flexibilidade.

O objectivo principal do nosso trabalho é aumentar a resiliência dos SGFT.

A primeira etapa da abordagem consistiu na caracterização dos eventos que

requerem resiliência no sistema. A taxonomia mais adoptada distingue falhas de

sistema, falhas de aplicações, excepções esperadas e excepções não esperadas.

Tornámos esta taxonomia mais detalhada através da definição do contínuo entre

excepções esperadas e não esperadas onde identificámos três classes: 1)

excepções esperadas verdadeiras, quando o evento é equivalente a um esperado

existindo procedimentos definidos na organização para o seu tratamento; 2)

excepções esperadas semelhantes, quando o evento é semelhante a um esperado

ii

embora não equivalente e os procedimentos existentes poderão ser aplicados com

ajustes pontuais; e 3) excepções não esperadas efectivas, são eventos para os quais

não existe conhecimento na organização que possa ser utilizado para o seu

tratamento. O envolvimento dos utilizadores no tratamento do evento aumenta

quando nos deslocamos das excepções esperadas para as excepções não esperadas

uma vez que o conhecimento existente na organização sobre o evento diminui. Se

não existe conhecimento na organização sobre o evento, o sistema não pode estar

preparado para reagir de forma automática. Esta classificação foi ainda

enriquecida com uma nova dimensão que distingue a capacidade da organização

para definir um plano de reacção antes de iniciar as actividades de recuperação.

As excepções para as quais é possível definir um plano de reacção são

denominadas excepções com possibilidade de planeamento, enquanto as

excepções para as quais não é possível definir um plano são denominadas ad hoc.

A área das Ciências Empresariais relaciona a capacidade de planeamento com a

incerteza associada à tarefa. Quanto maior a incerteza, menor a capacidade de

planeamento da organização. Quando os operadores não conseguem definir um

plano antes de iniciarem as actividades de recuperação, a situação tem de ser

ultrapassada com recurso a com recurso a actividades de resolução de problemas –

actividades não estruturadas. A solução que desenvolvemos destina-se a suportar

os operadores no tratamento de excepções não esperadas efectivas e ad hoc.

As excepções foram abordadas segunda a perspectiva das Ciências Empresariais.

Os factores de contingência que condicionam os subsistemas internos das

organizações foram discutidos com o objectivo de perceber o impacto da solução

na gestão das organizações.

Os sistemas existentes na literatura para aumentar a resiliência em SGFT foram

agrupados segundo as suas características em cinco níveis: 1) abordagens

sistémicas para o tratamento de falhas; 2) abordagens sistémicas para o tratamento

 iii

de excepções esperadas; 3) abordagens humanísticas com restrições e baseadas

em intervenções pontuais; 4) abordagens humanísticas com restrições e baseadas

em intervenções com suporte metamodelos; 5) abordagens humanísticas não

restringidas para suportar actividades não estruturadas. A grande maioria dos

sistemas existentes apenas suporta os primeiros quatro níveis. De todos os

sistemas estudados, apenas um suporta o nível cinco. Concluímos, então, que

existe uma área de investigação ainda não explorada.

O nível cinco é o mais exigente e requer intervenções sem restrições dos

operadores na execução dos fluxos de trabalho. O sistema que propomos

destina-se a suportar as intervenções sem restrições dos operadores – actividades

não estruturadas. Dois requisitos do sistema foram definidos desde o início: 1)

sistema completo; e 2) sistema aberto. O requisito do sistema completo especifica

que os operadores podem efectuar as intervenções que entenderem sem qualquer

restrição imposta pelo sistema. Os operadores devem poder efectuar o mesmo

conjunto de operações que executariam se não tivessem o suporte do sistema. O

requisito de sistema aberto deriva da necessidade de suportar as actividades não

estruturadas com informação relevante e actualizada sobre o estado do sistema e

da envolvente. O sistema deverá suportar os utilizadores com mecanismos de

recolha de informação que lhes permita compreender a situação de forma a

poderem tomar a decisão mais adequada.

As restantes características do sistema a desenvolver foram obtidas da actividade

de resolução de problemas: 1) o tratamento do evento resulta de um esforço que

envolve diversos operadores e onde é fundamental a participação dos actores

chave; 2) os operadores devem ser suportados por mecanismos de suporte ao

trabalho colaborativo nas suas funções de diagnóstico da situação excepcional e

na tomada de decisão sobre as actividades de recuperação mais adequadas; 3) o

sistema perdeu o controlo sobre a coordenação das diferentes acções de

iv

recuperação, passando os utilizadores a serem os responsáveis pela sua

orquestração; 4) o diagnóstico não está completo na primeira abordagem devendo

ser reajustado à medida que mais informação sobre o evento vai sendo recolhida;

5) mecanismos de suporte à decisão, desenvolvidos tendo em conta a realidade

organizacional em causa, devem ser integrados na solução de forma a auxiliar os

operadores na tomada de decisão sobre as acções de recuperação; 6) os

utilizadores devem ter a possibilidade de, em qualquer altura, consultar o histórico

do evento.

As funções elementares dos utilizadores no tratamento de excepções são:

detecção; diagnóstico; monitorização; e recuperação. As funções de diagnóstico e

de monitorização/recuperação são entrelaçadas, uma vez que o diagnóstico não

está terminado na primeira abordagem e vai sendo refinado com a informação

recolhida das acções de recuperação e de monitorização vão sendo

implementadas. Foi proposto um modelo de referência para a solução proposta

que resulta de uma extensão efectuada ao modelo apresentado pela organização

Workflow Management Coalition. A arquitectura da solução é obtida do modelo

de referência e identifica os componentes e as interfaces do sistema. A solução é

implementada por um modelo de fluxo de trabalho que reflecte as características

mencionadas. A solução foi implementada e funciona sobre a plataforma de

código aberto OpenSymphony.

A avaliação da solução foi estabelecida em quatro etapas distintas: 1) visão; 2)

validação da execuibilidade; 3) testes de campo; 4) utilização da solução pelas

organizações. As reacções do sistema de controlo de tráfego aéreo nos Estados

Unidos da América durante aos eventos catastróficos de 11/9/2001 funcionaram

como uma fonte de inspiração conceptual para o desenho da solução. O esforço

investido na implementação da solução reflecte a nossa preocupação com a

validação da possibilidade de implementação da solução. O sistema desenvolvido

 v

permite concluir que a implementação é possível. A validação da abordagem

apenas será possível com recurso a estudo de casos. Os estudos podem permitir

validar a solução e estudar as realidades organizacionais onde esta se aplica.

Finalmente, a prova final sobre a relevância da solução será obtida pela adopção

que vier a encontrar junto das organizações.

PALAVRAS-CHAVE: sistemas de gestão de fluxos de trabalho; excepções

não esperadas; suporte colaborativo; actividades organizacionais não estruturadas.

 vii

Abstract

Workflow Management Systems (WfMS) support the execution of organizational

processes within organizations. Processes are modelled using high level languages

specifying the sequence of tasks the organization has to perform. However,

organizational processes do not have always a smooth flow conforming to any

possible designed model and exceptions to the rule happen often. Organizations

require flexibility to react to situations not predicted in the model. The required

flexibility should be complemented with robustness to guarantee system reliability

even in extreme situations. In our work, we have introduced the concept of WfMS

resilience that comprises these two facets: robustness and flexibility.

The main objective of our work is to increase resilience in WfMSs.

 From the events demanding for WfMS resilience, we focused on ad hoc effective

unexpected exceptions as those for which no previous knowledge exist is the

organization to derive the handling procedure and no plan can be a priori

established. These exceptions usually require human intervention and problem

solving activities, since the concrete situation may not be entirely understood

before humans start reacting to the event. After discussing existing approaches to

increase WfMS resilience, we have identified five levels of conformity.

The fifth level, being the most demanding one, requires unrestricted humanistic

interventions to workflow execution. In this thesis, we propose a system to

support unrestricted users’ interventions to the WfMS and we characterize the

interventions as unstructured activities.

The system has two modes of operation: it usually works under model control and

changes to unstructured activities support when an exception is detected. The

viii

exception handling activities are carried out until the system is placed back into a

coherent mode, where work may proceed under model execution control.

KEY-WORDS: workflow management systems; unexpected exceptions;

collaboration support; unstructured organizational activities.

 ix

Acknowledgements

I will never be able to express my profound gratitude to my advisor, Professor

Pedro Antunes. He was always there, when I needed him, and I needed him lots of

times for long periods. His enlightenment and openness to discuss the different

topics associated to this work were crucial on various moments.

I would also like to thank the people from APSS for the never ending support they

gave me, in particular Professor Quaresma Dias, Dr. José Sacoto, Eng. António

Ramos, Dr. Beatriz Mendes, Dr.. Jorge Figueiredo, Dr. Marco Caferra, Vânia

Mendes, Manuel Henrique, Eng. Alberto Silva and Cristina Raposo.

I had one of my best experiences as a researcher in the Institute of Databases and

Information Systems in Ulm’s University. Friendship was in pair with

professionalism and I will never be able to express my gratitude to all of them. I

will never forget Prof. Peter Dadam, Prof. Manfred Reichert, Dr. Stefanie

Rinderle, Christiane Köppl, Eva Mader, Alexander Kaiser, Hilmar Acker, Markus

Kalb, Michael Bauer, Ralph Bobrik, Ulrich Kreher and Rudolf Seifert.

I am also grateful to my old colleagues and friends from Autoeuropa, Eng. Fausto

Santos and Eng. António Pinto that supported me on investing the possibility of

using the solution in the company as a case study.

I will never forget the first push I received from António Almeida to initiate this

work. Also, the never ending support I received from Carla Rosário and Lurdes

Cerqueira that never refused their help when I needed it.

My friends Emilio Vilar and Luis Moreira for the stolen time, I am deeply

grateful. To my friends from IPS, Ana Paula Pereira, Lina Ferreira, Patricia Dias,

x

David Simões, João Baía, José Rebelo, Pedro Cunha and Vítor Barbosa for the

support and encouragement they have always gave me.

The last but not the least, to the people that pay the biggest price for this work,

Hernâni João and Luisa Cordeiro. Hernâni João for my absence and Luísa for all

the inconveniences that a work of this nature always brings. To my parents and

family for my absence and lack of availability.

 xi

Table of Contents
Chapter 1 ..1

Introduction..1

1.1 The limits of traditional WfMS ..2

1.2 The proposed solution...5

1.3 Main contributions..11

1.4 The research context ...13

1.5 Publications...16

1.6 Organization of this thesis ..18

Chapter 2 ..21

WfMS in Organizations ...21

2.1 Workflow management systems...23

2.1.1. WfMS components and main concepts..25

2.1.2. Model for a WfMS supporting unstructured activities30

2.2 Organizational Sciences perspective ..31

2.3 Exceptions in WfMS...38

2.3.1. Systems perspective on failures and exceptions ..39

2.3.2. Organizational perspective on exceptions..44

2.3.3. Comparing and integrating perspectives..47

2.4 New exception classification ..49

2.5 Openness and completeness ...52

2.6 Summary...55

Chapter 3 ..57

Resilience in WfMS ...57

3.1 Systemic approaches to increase resilience ..60

3.1.1. Failure handling ...61

3.1.2. Handling expected exceptions ...65

3.2 Human-oriented approaches to increase resilience...69

xii

3.2.1. Metamodel approaches.. 71

3.2.2. Open-point approaches.. 78

3.2.3. Other humanistic approaches .. 79

3.2.4. Systems fully supporting unstructured activities... 81

3.3 Discussion .. 85

3.4 The expressiveness of metamodel formalisms and their impact in

workflow changes .. 90

3.4.1. Modelling languages and their impact in workflow changes........................ 90

3.4.2. Dynamic changes in workflow nets modelled using Petri Nets 94

3.5 Summary .. 97

Chapter 4 ... 99

A Solution to Support the Whole Spectrum of Organizational Activities 99

4.1 Conceptual approach.. 102

4.2 Solution’s state diagram... 107

4.3 Basic functions ... 112

4.4 Exception detection.. 114

4.5 Exception diagnosis ... 117

4.6 Exception handling strategies .. 123

4.7 Summary .. 127

Chapter 5 ... 129

Solution Architecture and Implementation.. 129

5.1 Architecture.. 130

5.2 Exception handling workflow .. 135

5.3 Automatic and manual exception detection ... 141

5.4 Recovery actions, monitoring actions and support users removing

inconsistencies ... 146

5.5 Applications Programmer Interface with the Service .. 155

5.6 Implementation in the OpenSymphony platform... 161

 xiii

5.6.1. The OSWorkflow project...161

5.6.2. Exception detection and signalling in the OSWF project171

5.6.3. Exception handling in the OSWF project ..176

5.7 User interaction with the service ..180

5.8 Exception data model ...187

5.9 Summary...189

Chapter 6 ..191

Evaluation ..191

6.1 The 9/11 conceptually inspiring event..192

6.2 The Port Authority Case ...196

6.3 Example Usage in a Brazilian Company ..200

6.4 Summary...200

Chapter 7 ..203

Conclusions and Future Work..203

References ..209

Appendixes...225

List of appendixes...225

xiv

List of figures
Figure 1.1. State diagram of the developed system to support structured and

unstructured activities in a WfMS ...6

Figure 2.1. WFMC’s reference model for a WfMS ...26

Figure 2.2. Extended WFMC’s reference model..31

Figure 2.3. Three exception types in the expected-unexpected continuum................50

Figure 3.1. Dynamic change bug for switching the execution order of the

tasks ...74

Figure 3.2. Approaches classification according to the control type and

planning capacity ...89

Figure 4.1. Solution’s state diagram...100

Figure 4.2. Extended WFMC’s reference model..102

Figure 4.3. Examples of possible organizational trajectories for the

exception handling procedure..106

Figure 4.4. Illustration of the organizational escalation of an exception

handling procedure ..107

Figure 4.5. Solution state diagram for one affected instance108

Figure 4.6. Complete solution state diagram for one affected instance110

Figure 4.7. Exception handling cycle ...114

Figure 5.1. Detailed version of the extended reference model reorganized.

The external interface E and an exception detection component

placed close to the enactment services were added.131

Figure 5.2. Solution’s architecture and its integration with the WfMS and

the environment ...132

Figure 5.3. Solution’s architecture and its integration with the WfMS,

environment and operators’ basic functions ..134

Figure 5.4. Exception handling workflow..136

Figure 5.5. Organizational escalation and trajectory for the first scenarion.............139

 xv

Figure 5.6. Identification mechanism for the interval class 143

Figure 5.7. Identification mechanism for the periodical class 144

Figure 5.8. Inserting monitoring task... 147

Figure 5.9. Backward jump.. 150

Figure 5.10. Forward jumps. a) abort tasks; b) parallel execution........................... 151

Figure 5.11. OSWorkflow referential model ... 162

Figure 5.12. OS_WFEntry table after the example initialization 162

Figure 5.13. Hierarchical organization of initial actions in a OSWF model............ 164

Figure 5.14. Hierarchical organization of steps in a OSWF model 165

Figure 5.15. State transition of the OSWF engine ... 167

Figure 5.16. OS_CURRENTSTEP table after the example initialization 168

Figure 5.17. OS_HISTORYSTEP table after execution of action 2........................ 169

Figure 5.18. Exception handling workflow page (EHW) .. 181

Figure 5.19. Editing the exception information ... 182

Figure 5.20. EHW page handling the 5 parallel branches of the exception

handling workflow .. 183

Figure 5.21. Choose a new responsible.. 184

Figure 5.22. Change affected users .. 184

Figure 5.23. EHW displaying alert messages at the top .. 185

Figure 5.24. Changing the affected instances .. 185

Figure 5.25. Selecting the table and field for a monitoring action........................... 187

Figure 5.26. Inserting external decision-making information.................................. 187

Figure 5.27. Exception referential model... 188

Figure 6.1. Web page for the client edit workflow .. 197

Figure 6.2. Exception related information ... 198

Figure 6.3. Inserting external decision-making information.................................... 199

xvi

List of tables
Table 2.1. Comparing system and organizational perspectives on exceptions48

Table 6.1. Timeline for the 9/11 events and system usage.......................................194

 xvii

Acronyms

ACID – Atomicity, Consistency, Isolation and Durability

API – Applications Programmer Interface

ATM – Advanced Transaction Models

BPM – Business Process Management

DBMS – Database Management Systems

ECA rule – Event Condition Action rule

ECH – Exception Handling Workflow

JSP – Java Server Pages

OS – OpenSymphony is the open source suite of components used in the solution

OSWF – OSWorkflow project within the OpenSymphony suite that implements a

workflow engine

RDBMS – Relational Database Management System

SOA – Service Oriented Architecture

UI – User Interface

WfMC – Workflow Management Coalition

WfMS – Workflow Management System

XML – Extended Markup Language

Chapter 1

Introduction

It is commonly accepted that organizational procedures embed the knowledge

required to achieve some desired organizational goals. These artefacts are used to

guide the flow of work within the organization defining what is(are) the next

task(s) to be executed, the required resources, the tools needed and the expected

outcomes. Workflow Management Systems (WfMS) are computer systems

developed to support organizational procedures. They are based on the stated

premise that procedures are able to define the details of the work organizations

have to carry out in order to achieve the desired objectives. Procedures are usually

transcribed in the form of processes that embed the coordination logic while

involved actors are responsible for implementing specific tasks. In a traditional

WfMS, the process is defined using a language that the system is able to interpret.

The flow of work is then scheduled among participants by following the rules

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

2

stated in the process model. Since process definition is separated from its

execution, the system is much more flexible than traditional information systems,

and any change to the procedure may be easily accomplished. Using a WfMS, the

organization should be released from the task of routing the process and all related

information through the different tasks and affected actors. By placing a computer

with the role of controlling the flow of work among actors, the traditional notion

of procedure as an organizational artefact that supports users on their daily

operations is transformed into a new and more rigid standard that all users must

follow strictly, i.e., since it is implemented under a computational control, every

organizational activity will have to conform with the process definition that plays

now the role of a script.

This original development of WfMS was biased by a rationalistic approach that

organizations follow their procedures on a rigid way in order to achieve their

goals [Suchman, 1983]. However, organizations also require flexibility when

performing their daily operations and processes do not necessarily contain all the

required information to accomplish the work. This clash between the original

objectives of WfMS and the concrete user and organizational requirements lead to

a difficult acceptance of these systems by their target market during the nineties

[van der Aalst and Berens, 2001; van der Aalst et al., 1999]. Therefore, some

research effort was invested to overcome this limitation.

1.1 The limits of traditional WfMS

It has been shown by various ethnographic studies that the idealistic smooth flow

of work described in process models is not always the case [Suchman, 1983;

Bowers et al., 1995]. Suchman questions [1987] the premise that procedures

(plans) are used by actors as guiding mechanisms (scripts) by realizing their

Introduction

 3

limitations in accounting for all situations founded in concrete scenarios. Users

are always conditioned by the peculiarities of the situations that are not

completely reflected in the plan and thus ad hoc activities must be carried outside

the plan. Suchman emphasises these observations by stating that every action is

situated by the contingencies of the environment under which it is accomplished.

In this perspective, plans are post hoc reconstructions of situated actions and filter

the peculiarities that characterize them, because they are biased by a rationalist

thinking. This radical approach has established a dichotomy between plans as

scripts or plans as resources for situated actions. Plans are considered resources

for situated actions because they play the weak role of a map that guides actors in

the space of the available actions, like a map guides a climber informing on the

available paths, the dangerous locations and so forth. A map does not in any sense

determine the sequence of steps. However, Schmidt [1997] discusses this

dichotomy using examples to show situations where plans play a stronger role.

The basic idea behind Schmidt’s work is not to question the validity of Suchman

research but to establish limits on its applicability, i.e., there are situations where

the available plans (even though post hoc reconstructions of situated actions) can

be used as scripts releasing users from the coordination activities and supporting

them on the sequence of activities required to achieve a desired goal. As we will

see on the next chapter, research in Organizational Sciences also shows that

procedures have different impact levels depending on the type of activity or

organization. We may summarize this issue stating that plans play different roles

according to the concrete scenario where the work is accomplished.

The two scenarios identified on the previous discussion are referred on this

dissertation as unstructured activities when users are performing their activities

using map guidance behaviour, and structured activities when procedures play the

stronger role of a script determining user actions. They should both be taken into

account when designing systems to support organizational activities. However,

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

4

WfMS are traditionally algorithm-based and developed with a special focus on

supporting structured activities. One of the main disadvantages using these

systems has been their lack of flexibility to adjust to concrete user demand, i.e.,

their inadequacy supporting unstructured activities [Abbott and Sarin, 1994;

Blumenthal and Nutt, 1995]. An exception is therefore a scenario where the

system is not able to support the users performing the required actions to achieve

the organizational goals. From the above discussion it can also be said that when

the plan (regarded as a resource) is not able to guide actors through the tasks, i.e.,

organizations face the applicability limits of the plan in a concrete situation, it can

be said that we are in the presence of an exception, where the situated

characteristics of actions should prevail over the prescribed ones. This discussion

enables us to express the main problem addressed by this thesis:

Difficulty adjusting WfMSs to real world scenarios.

The same problem has been addressed by various researchers in the field.

However, different solutions have been proposed by the research teams because

there is not a clear understanding on the type of support user’s demand on those

situations. We believe the majority of the proposed solutions are biased by the

rationalistic approach to the problem, where more primitives are inserted on the

WfMS that is always under any sort of an algorithm-based control. Even when

primitives are inserted to increase adaptability, they have their roots on the

original model and therefore do not allow the latitude operators require.

Therefore, the problem to be addressed is the difficulty that traditional WfMSs

have coping with unstructured activities. We assume there will always be

situations where users should be able to decide on what are the most suited

activities to fulfil organizational goals without any kind of restriction imposed by

the system based on a prescribed procedure. This statement imposes that on some

situations users should have the flexibility they have at their disposal when they

Introduction

 5

are not working with the support of a WfMS, i.e., all the flexibility they possess

when working at their office with all the tools they can use to accomplish work.

This is the completeness requirement, a core concept of our system that we

describe in detail on Section 2.5.

1.2 The proposed solution

The solution developed in this thesis is designed to support both

behaviours: structured and unstructured activities.

It is assumed that actors mainly adopt structured activities and thus work under

model guidance. When facing an exception, the system is able to change to

unstructured activity support. As mentioned in the previous section, during

unstructured activities users should be able to implement any activity they desire

without any restriction. The main idea behind this assumption is to increase the

latitude of interventions available to users.

We should informally introduce the model consistency concept (cf. Section 2.1.1

for a formally definition) since it is the basis for some of the discussions that

follow in this section. A workflow model is consistent if it allows a proper

completion in all situations, i.e., when users are performing structured activities

prescribed by the model they will allays reach the end and no tasks in middle are

left to be executed.

A direct impact of the increased latitude of the interventions mentioned above is

on the workflow model consistency. Contrary to existing systems (cf. Section

3.2), our system enables users to implement any activity they desire even if they

insert inconsistencies into the workflow model. It is the user’s responsibility to

decide if the activity should be implemented.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

6

Figure 1.1 shows the state diagram of the proposed solution that governs the

above mentioned behaviour for structured and unstructured activities support. The

solution implements an exception handling service that initiates when an

exception is detected and supports unstructured activities. As mentioned before,

unstructured activities are map guided which means that user’s actions should be

driven by information collected from the system and environment to support

decision making. On the other hand, these actions can involve more than one

person from the same department or from different departments within the

organization. Whenever more than one person is involved, some orchestration

mechanism must be provided to assure coordination between the efforts of the

various actors.

Working under model
control: structured

activities

Exception detected

Working under map
guidance: unstructured

activities

Replace under
model control?

Yes No

Procedure for the
exception handling
service

Figure 1.1. State diagram of the developed system to support structured and unstructured activities

in a WfMS

Unstructured activities proceed until the system is driven back into a coherent

state and can be placed back into model control. This is the last decision shown in

the state diagram. This decision should take into consideration any inconsistency

inserted into the model during unstructured activities support. As mentioned

Introduction

 7

before, users should be able to implement the most suitable action during

unstructured activities support without any system restriction – even if it requires

inserting inconsistencies in the model. Therefore, all the inconsistencies should be

removed before placing the system under model control. This activity can be

implemented by the users during unstructured activities and may be supported by

existing techniques that detect model inconsistencies (cf. Section 3.4). The

process of implementing unstructured activities to react to an exception and bring

the system back into a coherent state is the procedure for the exception handling

service.

Whenever we mention the proposed solution in this dissertation we refer the

computer based system that supports organizational activities. It is composed by

the WfMS standard system that supports structured activities and by our

developed functionality to support unstructured activities. Users are one of the

entities within the overall organizational system that interfaces with the proposed

solution. The boundaries and interfaces of the proposed solution are identified in

Section 5.1.

Since supporting structured activities is a standard feature of WfMS, we will only

discuss in detail the unstructured activities support. Therefore, we will pursue the

main problem identified above in Section 1.1 by focusing on:

Introducing unstructured activities features in a WfMS.

We will describe the general characteristics of these activities and identify the

main functionality the system should implement. It should be emphasized that the

proposed solution aims to be generic and applicable to any application

environment addressing the support of automated and human tasks in

organizational environments, such as Business Process Management (BPM) and

Service Oriented Architectures (SOA). In fact, the concrete implementation for

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

8

the system is not a major concern to our approach. This thesis proposes a

conceptual approach to manage business processes adjusting them to concrete

organizational scenarios. The underlying system used to implement the system is

not our research topic. Therefore, the recent research trends of BPM and SOA do

not in any way collide or invalidate our approach.

We are also not concerned on studying a particular implementation scenario.

However, in some specific applications there could be functionality that are of

particular importance and should be provided. A decision support tool, able to

process application specific data, is an important functionality when users have to

make decisions on the recovery actions that will bring the system back into a

coherent state. We recognize this facet by integrating a general tool that is

adjusted to the concrete implementation.

The functionality that a system should implement to support unstructured

activities identified in this thesis consider:

(i) Escalation;

(ii) Monitoring;

(iii) Diagnosis;

(iv) Communication;

(v) Collaboration;

(vi) Recovery;

(vii) Coordination;

(viii) Tools to determine the best solution;

Introduction

 9

(ix) History log.

An escalation mechanism is implemented to allow the involvement of several

users in the exception handling effort. This escalation mechanism is used by the

users affected by the exceptions to escalate the exceptional event to the upper

levels of the hierarchy.

In contrast with structured activities where users have a procedure that prescribes

all the required steps to achieve an organizational goal, during unstructured

activities they have to decide the most suitable actions. Therefore, unstructured

activities should be fed with updated and relevant information in order to

understand the peculiarities of the exceptional situation at hand and to improve the

decision making process on the most suitable activities to carry on. It is important

to realize that these activities can, in some situations, be characterized as problem

solving, where users do not know all the details about the situation and some

information may have to be gathered to improve the diagnosis. Therefore,

monitoring information about the system and the environment should be

continuously collected and distributed to the involved actors. Even further,

monitoring the effects on the system and on the environment of the implemented

actions decided by the involved users to react to the situation is also important to

understand their impact. This monitoring capability is the first functionality that

should be implemented by the system.

This linkage to the environment to collect relevant information is one facet of the

openness requirement. This requirement, that will be completed bellow, is another

key aspect of the proposed solution.

Situation diagnosis is another important functionality to support user

understanding the exceptional situation. The solution implements a situation

description component used to classify the event according an established

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

10

taxonomy. This classification may evolve over time as users change their

perception of the event.

On the other hand, some exceptional situations will involve more than one user. In

those situations it is critical to implement communication and collaboration

mechanisms among them in order to exchange information that facilitates the

creation of shared contexts and improve the common awareness of the situation.

In a different dimension, the collaboration between involved users should be

facilitated to support the decision making process. Communication and

collaboration support is therefore another important functionality of the

implemented solution. Even though the system implements communication and

collaboration mechanisms, the users may use alternative methods (e.g., meetings

or telephone conversations). Another facet of applying the openness requirement

to the developed system is the capability to collect relevant contextual information

about the usage of these external mechanisms and tools.

The solution must also enable users to intervene on the system after they decide

the most adequate actions to handle the exceptional situation. The recovery

mechanism enables these interventions. It is important to realize that during

unstructured activities support the coordination facet of traditional WfMS must be

relaxed since users decide on the most adequate activities to implement.

Therefore, during the solution development, this facet was investigated and we

propose a solution that manipulates the relevant coordination aspects for system

and users.

The functionality tools to determine the best solution stands for some

environments where the associated complexity is high and tools may be available

to support decision making and situation diagnosis (e.g., in the already mentioned

example of a lot manufacturing facility, the batches produced to respond to

customers requests may be calculated using operations research tools). This

Introduction

 11

functionality is oriented towards investigating decision making tools in the

exception handling process.

Finally, the functionality history log stores old values of the situation description

and the implemented activities. The log may be consulted during the event or on

future similar events.

1.3 Main contributions

The first contribution of this thesis is a proposal for a new reference model for

WfMS that is able to handle all type of exceptions. The reference model extends

the WFMC’s reference model with a new component. The interfaces of the

inserted component with the existing components were identified. The

functionality of the component and the information flow on the interfaces were

also defined.

Then, another important contribution is the exception handling procedure and

its integration in the WfMS, according to the state diagram mentioned in the

previous section. The identified states and the conditions under which exception

handling takes place are defined, because they are key aspects to understand the

proposed solution.

Supporting unstructured activities in organizational workflow is a research field

that has not yet received the deserved attention by the researchers in the field.

Therefore, another important contribution of the present dissertation is the study

of functionality, requirements, and conditions associated to the exception

handling process.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

12

Another important contribution is the identification of the situations that the

solution is able to handle. The related literature uses a broadly accepted

classification that distinguishes expected from unexpected exceptions [Eder and

Liebhart, 1995; Casati, 1998]. Expected exceptions are exceptions that can be

predicted during the designed phase while unexpected exceptions can not be

predicted and must be handled during runtime (cf. Section 2.3.1). However we

have questioned this dichotomy by realizing that in some situations the

organization may find similarities with some events that happened before. The

organization can therefore use its past experience to derive advised behaviour on

the present situation. Since the degree of similarity with previous events may

vary, we propose a continuum from expected to unexpected exceptions. This

continuum characterizes a set of the situations where the solution is applicable.

The exceptions close to the unexpected limit of the spectrum are those without

any previous organizational knowledge and where unstructured activities should

prevail over prescribed ones. As a result of this discussion we have proposed a

new taxonomy based on the expected-unexpected exceptions continuum. Another

dimension was added to this taxonomy to characterize whether users may plan the

complete reaction before any recovery mechanism is implemented. These two

dimensions enabled us to identify the exceptions that should be handled with the

support of an unstructured activity support service – ad hoc effective unexpected

exceptions, are situations for which no knowledge exists in the organization that

can be of any usage and that no a priori plan can be drawn.

Other important contribution is the characterization of the conditions under

which forward and backward jumps can be done in the model. This kind of

tests is particularly useful when the user wants to perform jumps in the model

without compromising its consistency. However, different from the majority of

the systems found in the related literature, we allow the user to jump even when

inconsistencies are inserted. The user is advised and may proceed if desired. It is

Introduction

 13

the user’s responsibility to choose the most adequate actions. As mentioned in the

previous section, tests on model consistency are performed before the system is

placed back under model control.

Finally, one fundamental contribution is the implementation of the proposed

solution in a real world workflow system. The solution was implemented in the

OpenSymphony (OS) [OpenSymphony, 2007] project, developed in the Java

programming language and available to the open source community. The

exception handling procedure is implemented by a dedicated model that runs on

the same WfMS system as the organizational models. This implementation

highlighted several issues related with exception handling that are of the most

importance to implementers and to software engineering community.

1.4 The research context

The topic under investigation is still an hot topic deserving attention by the

researchers in the field as the recent publications from Combi et al. [2006],

Adams et al. [2005] with a recent PhD thesis by Adams [2007], Russel et al.

[2006] and Vojevodina [2005] seem to fundament.

In our work, we purpose a new approach to unexpected exception handling that

strongly differs from the majority encountered. During our work, we felt the

necessity to validate the approach in real world scenarios.

However, finding effective examples of unexpected exceptions is difficult because

if the exception is defined beforehand then it must be biased. An effective

unexpected exception must always be brought from real life with proper

documentation about the adopted strategies to handle the situation. Considering

this limitation, two motivating examples are used to illustrate the solution: 1) a

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

14

media report on the 9/11 catastrophic event, as experienced by the USA’s air

traffic control centre; and 2) a non-catastrophic but also unexpected event, where

a WfMS must handle for the first time a client that went bankrupt in a real world

organization. While this second situation is much less inspiring that the first one,

it was indeed experienced by us during the implementation of a space rental

management system for a Port Authority.

The 9/11 example will be used throughout this thesis as an inspiring event to

establish our solution. Whenever we use the example, the text is inserted in a box

to differentiate it from main text and facilitate the reading.

The 9/11 event was fundamentally selected because very rich information

about the adopted exception handling procedures is available to the public

[USA TODAY, 2007]1. The overwhelming impact in society and strong

political implications of this unique event were not within the selection

criteria and are out of the scope of this research. On the other hand, as

discussed in the previous section, an effective unexpected exception is an

event for which the organization has no prior knowledge about the

resolution. Therefore, this is a good example to motivate the discussion on

how WfMS users react to this type of situations.

Considering regular air traffic control, every plane is a process instance and

every route is modelled since the plain first checks in the air traffic control

on the departing airport and until it checks out on the arriving airport. For

instance, AA flight 11 route on 9/11 started at Boston and its model

considered driving it to Los Angeles. At approximately 8:15 AM on that

Introduction

 15

day, the air traffic control centre in Boston stopped receiving feedback from

the airplane pilots and lost the transponder signal. Controllers also reported

hearing a man with a strange accent in the cockpit. This combination of

events originated an exception. Along with the description of our exception

handling solution, facts from this real event will be used to exemplify how

the proposed solution could be used to support exception handling.

One of the key decisions taken during this exceptional situation was to land

every plane that was flying in the USA and Canada air spaces. According to

FAA officials, facing this exceptional event, they “[…] decided not to write

a new set of procedures for clearing the skies. They started to but scrapped

the idea. They concluded that the FAA was better off relying on the

judgment of its controllers and managers.” From our perspective, this means

that under such extreme conditions procedural control was considered worse

than giving people access to the relevant updated information and letting

them decide the best reactions to the concrete situation, i.e., map guidance

was clearly favoured against model guidance.

Another important implication to our research can be drawn out from this

quote from USA Today: “landing nearly 4,500 planes was a massive

undertaking and a historic achievement. It required intense cooperation,

swift decision-making and the unflinching work of thousands of people.

Across the nation, controllers searched for alternate airports to land large

jets.” The mentions to intensive cooperation and swift decision making are

crucial to our exception handling approach.

1 the report was issued by USA Today based on interviews to more than 100 people involved in key decisions

and data collected from other sources, such as FAA radar, air traffic control databases and a special software

to analyze plane rerouting.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

16

The second example was chosen because it results from a workflow

implementation in a Port Authority organization within the work developed for

this thesis. During the implementation, we had the chance to follow a real

exceptional event since it was detected until the handling finished. The example

helped us understanding the concrete user’s needs on these situations and how the

system can support them. Several data related with this event was collected and

the system users were interviewed to identify the adopted handling procedures

and their relationships with the WfMS.

During the development of this work, the author had the opportunity to work for

six weeks in the Institute for Databases and Information Systems in the University

of Ulm with one of the most prominent research groups in the area of adaptable

workflow management systems. The exchange of ideas enriched the concepts

developed and the proposed solution.

Before starting this research work, the author has worked for four years in a car

manufacturing company. This experience has made him aware of the

organizational conditions under which work formalization and flexibility must

coexist. The perspective obtained has helped on establishing the concepts

developed in the present work.

1.5 Publications

The following papers containing partial results of the work developed during this

thesis were published.

Mourão, H. and Antunes, P., (2003) Workflow Recovery Framework for

Exception Handling: Involving the User, Groupware: Design,

Introduction

 17

Implementation, and Use., J. Favela and D. Decouchant. Lecture Notes in

Computer Science, vol. 2806, pp. 159-167. Heidelberg, Springer-Verlag

Mourão, H. and Antunes, P. (2003) Supporting Direct User Interventions in

Exception Handling in Workflow Management Systems, Workshop de

Sistemas de Informação Multimédia, Cooperativos e Distribuídos –

COOPMEDIA 2003, Porto, Portugal

Mourão, H. and Antunes, P. (2003) Suporte à Intervenção de Operadores no

Tratamento de Excepções em Fluxos de Trabalho, 4ª Conferência da

Associação Portuguesa de Sistemas de Informação, Porto, Portugal

Mourão, H. and P. Antunes (2004) Exception Handling through a Workflow. On

the Move to Meaningful Internet Systems 2004: Coopis, Doa, and Odbase:

OTM Confederated International Conferences, Coopis, Doa, and Odbase. R.

Meersman and Z. Tari. Lecture Notes in Computer Science, vol. 3290, pp.

37-54. Heidelberg, Springer-Verlag.

Mourão, H. and P. Antunes (2005) A Collaborative Framework for Unexpected

Exception Handling. Groupware: Design, Implementation, and Use. H.

Fuks, S. Lukosch and A. Salgado. Lecture Notes in Computer Science, vol.

3706, pp. 168-183. Heidelberg, Springer-Verlag.

Mourão, H. and P. Antunes (2005) "Supporting Direct User Interventions in

Exception Handling in Workflow Management Systems." Sistemas de

Informação, 17, pp. 39-51. ISSN: 0872-7031.

Mourão, H. and Antunes, P. (2007) Supporting Effective Unexpected Exceptions

Handling in Workflow Management Systems, Proceedings of the 22nd

Annual ACM Symposium on Applied Computing, pgs 1242 – 1249, Seoul,

South Korea, ACM Press, ISBN 1-59593-480-4

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

18

The relevance for current research in the WfMS area of the published work may

be attested by the citations that it has already deserved. Appendix D provides a list

of papers that cited our work.

1.6 Organization of this thesis

We start in Chapter 2 by discussing the adjustment of WfMS to organizations.

After revising the main concepts associated to WfMSs in Section 2.1.1, we

propose a new reference model for a WfMS that is able to handle all types of

exceptions in Section 2.1.2. Then, in Section 2.2 we revise the Organizational

Sciences perspective on procedures and how they can be used to organize the

work. The notion of exceptions as seen from this perspective is also discussed and

the theory is also used to fundament our proposed solution. The chapter proceeds

describing two perspectives that exist in the literature to classify exceptions in

Section 2.3: a system and an organizational. The taxonomies are compared and

merged to establish the taxonomy used in this thesis. In Section 2.4 we discuss

and refine one classifying dimension that is common to both perspectives and we

insert a new dimension used to identify the events requiring unstructured

activities. Finally, in Section 2.5 two mandatory requirements to effectively

support unstructured activities are identified: openness and completeness.

Chapter 3 starts by defining the resilient property of a WfMS. Resiliency concerns

being robust to react to failures and flexible to handle unexpected exceptions. We

then review the existing systems to increase resilience that were grouped into

systemic and humanistic approaches. Systemic approaches, described in Section

3.1, are mainly designed to keep control in the system and handle failures and

expected exceptions. They mainly increase robustness and have minor impact on

flexibility. Humanistic approaches, described in Section 3.2., are designed to

Introduction

 19

increase flexibility to handle unexpected exceptions. They support users adjusting

business models to react to exceptions and migrating running processes to the new

model. However, these approaches restrict the allowed interventions to maintain

model consistency. In Section 3.3 we compare the reviewed approaches according

to their impact on resilience and we identify five different consistency levels of

support. We were also able to realize that few systems integrate the consistency

required to support unstructured activities. To conclude the chapter, Section 3.4

discusses the existing modelling formalisms according to their expressiveness

capability and to their impact on workflow changes. We also justify the adopted

modelling formalism for this thesis and identify how changes may be

implemented in the adopted formalism.

In Chapter 4, we establish the conceptual model of our approach. In the

conceptual model we have completed the WFMC’s reference model introduced in

Chapter 2, and described the concepts of organizational trajectory for the

exceptional handling procedure, and organizational escalation of the procedure in

the organizational hierarchy when users are involved in the handling process. We

proceed with the state diagram of the solution that supports all the five

consistency levels defined in the previous chapter. We settled the focus of this

thesis on level 5, a system to support unstructured activities. Then, the basic

functions required to support a level 5 system are described: detection, diagnosis,

recovery and monitoring. In our approach, we advocate an intertwined play

between diagnosis and the handling activities of monitoring and recovery, since it

is considered that the diagnosis may not be complete at the first approach. This

chapter concludes with classifications to describe the event and the handling

strategies.

Chapter 5 is dedicated to the solution’s architecture and implementation. The

solution’s architecture is derived from our extended reference model and the main

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

20

components and interfaces with the WfMS and with the environment are

identified. The solution is implemented by a dedicated workflow that implements

the solution state diagram and the basic functions identified in the previous

chapter. When an exception is detected, the exception handling workflow is

instantiated initiating unstructured activities support. The chapter proceeds with

the description of the constructs that automatic detect exceptions and with the

recovery and monitoring operations users implement to bring the system back into

a coherent state. The remaining part of the chapter is dedicated to the

implementation details using the OS suite. Hence, we start by describing the suite

and then how exception detection and recovery is implemented using the suite.

Next, we explain the user interface with the service by using interface examples

and we finish by describing the data model used to store exception related

information.

In Chapter 6 we use the Port Authority and the 9/11 examples to validate our

approach. The Port Authority example results from a real unexpected exception

that we were able to follow whereas in the 9/11 we discuss how the solution could

have been used by the air traffic control system. Finally, chapter 7 is dedicated to

the conclusions and future work.

Chapter 2

WfMS in Organizations

The work processes carried out by organizations in their daily operations have

been identified to belong to a continuum ranging from totally unstructured to

completely structured [Sheth et al., 1996]. It is interesting to note that the majority

of the available organizational information systems tend to fall close to both sides

of the spectrum boundaries [Sheth et al., 1996], thus leaving a significant gap in

between. Unfortunately, traditional WfMS fall into the highly structured boundary

and thus contribute to this gap. WfMS emphasize the execution of work models,

play the role of scripts in formal organizational structures and thus have a

normative engagement [Schmidt, 1997]. Closer to the other end of the spectrum

limits, Suchman [1987] proposes the notion of maps, which position and guide

actors in a space of available actions, providing environmental information

necessary to decision making but avoiding the normative trait. Email systems, the

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

22

newly developed collaborative Web platforms sharing information among users

that can also collaboratively change the content, and group decision support

systems that can be found in meeting rooms are examples of systems that fall

close to the unstructured limits of the spectrum. These systems do not have any

model to be followed since no model is appropriate to support the interactions.

Since traditional WfMS fall close to the structured limits of the spectrum, they are

inadequate to cope with unstructured processes that emerge in organizations. To

support the continuum of organizational needs, WfMS should cope with the whole

spectrum of structured and unstructured activities. This requirement has been

identified by Ellis and Nutt [1993], when they realized that WfMS must be

flexible to succeed. Also, Abbot and Sarin [1994], based on empirical evidence,

claim it is necessary to integrate procedural and nonprocedural work in WfMS to

react to exceptions. They define nonprocedural work as “unchoreographed

interactions between people”. In our solution, we propose a system that is able to

switch its behaviour from structured activity where operators are supported by

model guidance to unstructured activity, characterized by map guiding operators,

and then back to structure whenever required. In the WfMS community,

nonprocedural work has also been designated exception handling, encompassing

the set of actions aiming to react to a kind of event that is out of the scope of the

work model [Abbott and Sarin, 1994].

The main objective of this chapter is to characterize the types of events that the

solution developed in this thesis is designed to handle. It starts by establishing

WfMS core concepts in Section 2.1. Section 2.2 discusses procedures and their

usage inside organizations in the light of the Organizational Sciences perspective.

The role of exceptions in organizations is also studied and the strategies to handle

them according to management sciences are discussed. This perspective is also

used to discuss the adequacy of the proposed solution. Section 2.3 introduces two

WfMS in Organizations

 23

taxonomies for exceptions based on two different perspectives: system and

organizational. By identifying different exception dimensions and their impact on

organizations the exception types can then be delineated. Even further, from the

evaluation of the organizational impact important guiding behaviour during

exception handling can be drawn. In Section 2.4, the exception taxonomies are

used to identify the exception type handled by the proposed solution: ad hoc

effective unexpected exceptions. Finally, in Section 2.5 we introduce the openness

and completeness requirements.

2.1 Workflow management systems

The WfMS technology has evolved since its concepts were firstly outlined in the

mid 70s [Nutt, 1996]. It has its origins on Office Information Systems as

researchers realized that changes needed in the information systems developed to

support clerical work were very difficult and expensive, because business logic

was embedded in the system [van der Aalst and van Hee, 2002]. It usually

involved the modification of complicated programs developed by different

programmers and was time consuming and expensive. Researchers proposed to

decouple the control flow from the elementary tasks that were required to fulfil

the organizational processes. The control flow would then be specified in high

level programming languages (including visual programming), while different

computer applications implemented the tasks. The idea was to increase the

system’s flexibility and adapting changing requirements or small model

deviations. These changes could be accomplished trough changes in the high level

language that could even be accomplished by the end user.

Some high level modelling languages were then proposed to decouple the process

specification from its execution [Ellis and Nutt, 1980; Hammer et al., 1977]. Aalst

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

24

and Hee [2002] mention this separation as one of the most important

characteristics of a WfMS, because it enables the separation of the business

process logic from the system. Any change in the business process can be

implemented by a change made to the model that should be easily achieved and

even be performed by the operators lacking programming experience. The WfMS

concept was established as an automated system to support the execution of

business processes within organizations.

As the field developed, some definitions were issued. In particular, Sheth et al.

[1996] present a complete definition where the various facets of a WfMS are

enhanced. The definition starts with business process: a collection of activities

tied together by a set of precedence relations and having a common organizational

objective. This involves distributing, scheduling, controlling and coordinating

work activities among humans and information systems resources. This definition

also embraces the organizational perspective of business processes, as a collection

of tasks with the aim of achieving a common goal, and the system perspective,

where the tasks must be coordinated, distributed, scheduled and controlled.

Sheth et al. define workflow management as the automated coordination, control

and communication of work task, both of people and computers, as it is required

to carry out business processes. This is performed by a workflow enactment

service, which is controlled by a computerised representation of the organizational

processes and provides the required services on a computer network.

The Workflow Management Coalition (WFMC) [WfMC, 2007] is a global

organization where the main companies developing WfMS products are

represented. It is among its objectives to develop standards in the field that

facilitate interoperability among workflow systems developed by different

vendors. Since the terminology defined by the coalition has encountered some

acceptance in the area, the next section presents the WFMC concepts that are

WfMS in Organizations

 25

relevant for the present dissertation. The reference model developed by the

coalition is also briefly described. This section is also used to define some core

concepts used throughout this work. Then, in Section 2.1.2, the coalition’s

reference model is completed and a new model able to support unstructured

activities according to the solution developed in this work is described.

2.1.1. WfMS components and main concepts

The WFMC definition for a WfMS is [WfMC, 1999] “a system that defines,

creates and manages the execution of workflows trough the use of software,

running on one or more workflow engines, which is able to interpret the process

definition, interact with workflow participants and, where required, invoke the use

of IT tools and applications.” Therefore, the WfMS interprets a process definition

and creates, manages and defines the execution of workflows.

The definition is complemented with the WFMC reference model shown in Figure

2.1 [Hollingswoorth, 1995] that represents a generic WfMS with the five areas of

functionality. Workflow Client Applications and Invoked Applications belong to

the same area of executing tasks. For the sake of simplicity, we will refer to the

areas of functionality, excepting executing tasks, as components of the WfMS

system. The main purpose of the reference model is to specify the interfaces

between components to assure interoperability. Process Definition Tools enable

the design of process models while the Workflow Enactment Service interprets

the process models and controls the instantiation of the processes and sequencing

of activities. Workflow Client Applications and Invoked Applications represent

the applications that implement the tasks and are invoked by users or by the

workflow respectively. WfMS usually run on different systems and platforms

being often classified as heterogeneous, autonomous and distributed [Worah and

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

26

Sheth, 1997]. The interface with other workflow enactment services is also

represented in the figure.

According to the WFMC terminology and glossary [WfMC, 1999], workflow

monitoring “is the ability to track and report on workflow events during workflow

execution” and administration can include functions like initiating or suspending

the execution of some task or model, reassign work items and control the versions

of process definitions. The Administration and Monitoring component

implements these features.

Process Definition Tools

Workflow API and
Interchange Formats

Administration and
Monitoring Tools

Other Workflow Enactment
Service(s)

Workflow Enactment Service

Workflow
Engine(s)

Workflow
Client

Applications

Invoked
Applications

Workflow
Engine(s)

Figure 2.1. WFMC’s reference model for a WfMS

The process definition is a representation of a business process in a form which

supports automated manipulation, such as modelling and enactment by a

workflow management system. The process definition consists of a network of

activities and their relationships, criteria to indicate the start and termination of

the process and information about the individual activities, such as participants,

associated information technology applications and data, etc. [WfMC, 1999].

WfMS in Organizations

 27

Modelling organizational procedures is a core concept in WfMS. Even further, if

it is requisite to be flexible and support all kinds of human activities in the office,

it is also necessary to be able to model human behaviour, as the WfMS’ intent is

to orchestrate their tasks. According to Nutt [1996], “a model is an abstract

representation of a target phenomenon and represents a subset of the

characteristics of the target system, i.e., it uses specific characteristics of the target

system while ignoring others.” Even though we recognize the intrinsic limits of

the model, it is important to focus on the perspective that models should be as

complete as possible to increase their applicability reducing the number of raised

exceptions.

Recognizing the above mentioned limitation, Sheth et. al. [1996] introduced the

concept of Work Activity Coordination as a multidisciplinary research to

understand the interaction between technology, organization and human

participants to cope with situations that are complex and dynamic, to learn how to

adapt to frequently changing processes or to heterogeneous environments possibly

involving multiple, dynamic and virtual organizations. They emphasize the

multidisciplinary facet because these problems go beyond the current

technological thinking and should involve other areas such as Organizational

Sciences.

The acronym WfMS has been used with different meanings by the researchers in

the field and some clarification is therefore required. In our conceptual approach,

we emphasize the usage of the model as a script guiding actors through the

required tasks to implement a business processes. In some systems, the flow of

information and work among participants is not defined a priori and users define

the next operator that should carry on with the work on the fly, according to their

requirements. These systems, referred in the literature as ad hoc workflow

[Georgakopoulos et al., 1995], do not have the semantics of the business process

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

28

they model and do not play the role of scripts guiding actors on every action that

should be implemented. Our approach is based on systems that support users

according to this paradigm and therefore ad hoc workflows are out of the scope of

this thesis.

Some core concepts related to the WfMS model consistency and correctness must

be defined because they are used throughout this document [van der Aalst, 2001]:

• Model consistency – a model is consistent if it is capable of executing from

its starting task to the final task without leaving any task in execution, i.e.,

there are no dead-locks or live-locks. Two additional conditions for

consistency are to assure that every task has the chance to be executed if the

proper conditions are met, and that the same task cannot be triggered twice at

the same instant [van der Aalst, 2001];

• Model correctness – a model is said to be correct if it reflects adequately the

process. It does not mean, of course, that the process itself reflects in all its

essence the conditions users found when executing the process. It is only a

stated relationship between the process and the workflow model that the

system will follow.

Some generic model constructs defined in the WFMC’s terminology and glossary

[WfMC, 1999] are used throughout this document:

• AND-Split – a point within the workflow where a single thread of control

splits into two or more threads which are executed in parallel within the

workflow, allowing multiple activities to be executed simultaneously;

• AND-Join – a point in the workflow where two or more parallel executing

activities converge into a single common thread of control;

WfMS in Organizations

 29

• OR-Split – a point within the workflow where a single thread of control

makes a decision upon which branch to take when encountered with

multiple alternative workflow branches;

• OR-Join – a point within the workflow where two or more alternative

activity(s) workflow branches converge to a single common activity as the

next single step within the workflow. (As no parallel activity execution has

occurred at the join point, no synchronisation is required.)

The concepts of pre-condition and post-condition are also relevant for this thesis

[WfMC, 1999]:

• A pre-condition is a logical expression which may be evaluated by a

workflow engine to decide whether a process instance or activity within a

process instance may be started;

• A post-condition is a logical expression which may be evaluated by a

workflow engine to decide whether a process instance or activity within a

process instance is completed.

Finally, it is also important to distinguish between the different types of data

manipulated by a WfMS. This dissertation uses the definition presented in the

WFMC terminology and glossary [WfMC, 1999]:

• Workflow control data – data managed by the WfMS and/or workflow

engines. Such data is internal to the WfMS and is not normally accessible

to applications. This data is used to store information about running

instances and the workflow state, e.g., the state of the instances, the users

that are executing tasks and the starting time;

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

30

• Workflow relevant data – data used by the WfMS to determine the state

transitions of a process instance and manipulated by the workflow engine

and applications. For example, the cash value of a client is workflow

relevant data if an instance can only proceed when the cash amount is

above a specific value;

• Application data – data that is application specific and not accessible to the

WfMS.

2.1.2. Model for a WfMS supporting unstructured activities

To account for unstructured activities, we must extend the reference model

defined by the WFMC as shown in Figure 2.2. The main idea behind this

extension is not to specify the interface details for WfMS interoperability as in the

WFMC reference model, but to identify the new architecture required to support

unstructured activities in a traditional WfMS. Therefore, the interfaces are

identified here, but the functionality will be described throughout the dissertation.

The major goal behind this extension is that the system must be able to switch

from model guidance to map guidance. This functionality requires direct

interaction with the enactment services of WfMS represented by interface A.

Another required functionality is the capacity to implement model changes on the

running instances. These changes require access to the process definition tools

(interface B) and to the enactment services (interface A) in order to identify the

instances on which the change is to be applied.

In some situations it may also be necessary to suspend the execution of a process

model, to reallocate a task or to monitor system evolution using the standard

WfMS functions. These features are implemented using interface C with the

Administering and Monitoring Tools shown in the figure.

WfMS in Organizations

 31

Process Definition Tools

Workflow API and
Interchange Formats

Administration and
Monitoring Tools

Other Workflow Enactment
Service(s)

Workflow Enactment Service

Workflow
Engine(s)

Workflow
Client

Applications

Invoked
Applications

Workflow
Engine(s)

Tools to support
unstructured activities

Exception handling
service

A

B

C

Figure 2.2. Extended WFMC’s reference model

2.2 Organizational Sciences perspective

Hatch [2006] claims that “organizations arise from activities that individuals

cannot perform by themselves or that cannot be performed as efficiently and

effectively alone as they can be with the organized effort of a group.” Therefore

organizations involve a group of people that work together for a common goal. In

Galbraith’s [1977] words, an organization is “composed of people and groups of

people aiming to achieve some shared purpose through the division of labour and

integrated by information-based decision processes continuously through time.”2

2 The author’s work experience in a car manufacturing company contributed to the relevance of the

Organizational Sciences perspective in this thesis.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

32

Contingency Theory is one of the research lines within Organizational Theory

studying different forms of organizing work and positing that effective

organizations should adapt to their environment [Donaldson, 1996]. According to

this theory, organizations tend to fit their internal subsystems to the environments

where they operate. As Morgan [1997] points out, “organizations consists of

interrelated subsystems of a strategic, human, technological, structural and

managerial nature which need to be internally consistent and adapted to the

environment.” We will discuss how the solution proposed in this thesis can be

used to improve the organizational ability to fit the environment.

One of the first works on Contingency Theory was published by Burns and

Stalker [1961], where the authors developed the concepts of organic and

mechanistic organizations. The former characterizes an open and flexible style of

management where norms do not usually play a strong role and hierarchical rules

do not restrict users from communicating with different departments. This type of

organization is suited to changing technological and market conditions. The

mechanistic organization is characterized by rigid norms, procedures and

hierarchy and is suited to stable markets and technological conditions. These two

organizational types are at the end of a continuum, and organizations do not

entirely lie on each of them. Even in the same organization some departments

might show organic behaviour (e.g., research and development department), while

others show more mechanistic (e.g., production).

Since this theory was firstly introduced in the sixties, researchers have pursuit the

best way for aligning internal subsystems to the environment and numerous

developments within this theory have emerged. However, none of them has

gained predominance and even the involved researchers recognize that their

theories have boundary conditions [Hatch, 2006]. Nevertheless, the theory has

been used as the basis for organizational analysis or, as Morgan [1997] puts it, the

WfMS in Organizations

 33

“contingency theory and an understanding of organizational needs can provide the

basis for an organizational analysis. The analysis helps us describe detailed

patterns of organizational relations, and it shows us possible solutions to the

problems revealed.”

The solution developed in this dissertation enables organizations to cope with the

whole spectrum of organizational activities, from unstructured to structured

activities while keeping the internal organizational subsystems unchanged. The

objective is to increase the capacity an organization has to fit to the environment

without adjusting its internal subsystems. I.e., for an organization that is adapted

to the environment and with internal subsystems consistent and placed on some

point of the organic-mechanistic continuum, the objective is to increase the

organizational capability to deal with environmental instability. The organization

should be able to switch to an organic style whenever the environment requires

and then back to its standard mechanic style whenever the situation is overcome.

In order to understand the impact of this perspective on the organization as a

whole, one should discuss its impact on each of its subsystems. We will start by

the Technological subsystem. We will discuss how the environment affects this

dimension and through it the other organizational subsystems, such as the

structure. Then we will discuss how the exception handling solution developed in

this dissertation can affect the analysis and improve the organizational capability

to fit the environment. Technology, in the context of Organizational Sciences, is

defined by Hatch [2006] as the “tools, equipment, machines, and procedures

through witch the work is accomplished.” According to Perrow [1986] the merit

of this analysis is that “it provides some independent leverage in constructing

organizational typologies because it focuses on something more or less

analytically independent of structure and goals.” Perrow uses two dimensions to

classify how the technology affects the organizational capacity to react to failures:

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

34

coupling and interaction3. Interaction is the way subsystems within the

technological system interact with one another and the effects these interactions

have on the global system. Systems are classified as having complex or linear

interactions. In complex interaction, one failure can produce multiple effects on

more than one subsystem and produce unexpected and incomprehensible results

because the visible aspects of the system malfunction do not allow operators to

understand what has happened. They often require experienced and highly trained

personal to understand the cause of the problem by looking at its manifestations.

On the other hand, in linear interactions, single or multiple failures have visible

and easily understandable impacts on the overall system. In these situations, it is

not so important to use skilled personnel to understand the root cause of the

problem. Examples of systems with complex interactions are nuclear power plants

and airlines, while systems with linear interactions are assembly plants and

post-offices. The second dimension is the degree of coupling. If coupling is loose,

there is time to react to failures by replacing equipment, supplies or personnel or

by choosing alternative ways of running the system. If the degree of coupling is

tight, then the response must be fast (possible due to high impact of the failure on

the system and/or on humans) and none of the above mentioned safeguards may

be used. In tightly coupled systems there is less waste in material buffers and

usually energy efficiency is higher. These systems also promote rapid and

centralized decision making, strict schedules, rapid changes to production

schedules and immediate response to deviations. Examples of tightly coupled

systems are flying airplanes and nuclear power plants while loosely coupled

systems are universities and research and development organizations.

3 The focus of Perrow analysis is on system failures and not on organizational efficiency and is in line with

this dissertation focus on how organizations cope with exceptional situations.

WfMS in Organizations

 35

For systems showing both tight coupling and complex interactions, an inherent

paradox undermines their structural organization: for one side they should be

based on centralized decision making (due to tight coupling) while for the other

side they should rely on the operators knowledge of the specific equipment in

order to understand what is going on (due to complex interactions). However, the

overall system view that should govern centralized and critical decision making

within a timely frame (normally minutes or even seconds) is not compatible with

information exchange with those that have critical information and knowledge

about the malfunctioning subsystems. We believe that in this kind of situations,

the system proposed in the present dissertation would play an important role since

it allows the involvement and cooperation between the operators close the

malfunctioning equipment or task and those with the responsibility for the

centralized decision making. The sharing of updated information and knowledge

improves the capability to make better decisions to recover from the situation

[Morgan, 1997; Galbraith, 1977].

We will now place the focus of our analysis on the organizational structure and

how it is affected by the environment. It should be noticed that these two analyses

are not independent from one another and that some aspects may look similar.

Nevertheless, both of them highlight different aspects of the phenomenon that

deserve some discussion. Since organizations are supported by the division of

labour, they must implement some coordination mechanisms to guarantee the

coherence of the particular tasks in the whole. Galbraith [1977] and Mintzberg

[1999] studied organizational structures and their coordination mechanisms.

Mintzberg posits that organizations seem to need only five types of coordination

mechanisms: mutual adjustment, direct supervision, work standardization, results

standardization and standardization of operator’s qualifications [Mintzberg,

1999]. If the task is well known in advance, the organization can elaborate

procedures and rules in advance, adopting a standardization strategy. The

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

36

hierarchy of command is responsible for the direct supervision of operators,

guarantying the output is within standards, informing operations of commands

originated at higher management levels, and resolving any non-planned situations.

The work standardization is used to minimize the amount of information flowing

up and down in the hierarchy, since it defines how operators should react on the

situations they encounter. Information flow is a very important topic in

management sciences because every organization has a limited capacity to process

it [Mintzberg, 1999; Galbraith, 1977].

Discussing the administrative principles at the beginning of the twentieth century,

Fayol [1919] realized that subordinates should handle routine matters, leaving

managers free to handle exceptions to rules and standard procedures. This

observation has resisted over time and Galbraith [1977] contrasts rules to

exceptions, where rules are the standardization elements of organizations that

handle the repetitive events, while new and unique events are treated as

exceptions that should be handled by a manager responsible for all the affected

areas. Exceptions involve a process of information gathering about the situation

and decision about the appropriate actions to carry out. Therefore, exceptions

increase the amount of information flows upwards the hierarchy of command, the

decision making by middle and high management, and also increases the amount

of control flow downwards the hierarchy to implement the decisions [Mintzberg,

1999]. If the number of exceptions is too high, compared with the capacity the

organization has to deal with exceptions, medium and senior management may

become overloaded and delays will happen on information flows. In these

situations, the organization may face a potential behaviour control problem,

because status information about problematic tasks does not arrive to management

staff on time and decisions are delayed. This is recognized as a critical factor

limiting the organizations whishing to achieve high levels of performance

[Galbraith, 1977].

WfMS in Organizations

 37

It is important to realize the attention exceptions deserve to Organizational

Sciences researchers. This perspective on exceptions has played an important role

in our approach because we have the aim to study their impact on organizations.

As it was said above, standardization is only possible if the organization has

enough knowledge about task details that allows preplanning. It follows that if

task uncertainty is high, the number of exceptions increases and no proper

planning can be defined a priori. Task uncertainty is defined by Galbraith [1977]

as the difference between the information necessary to perform the task and the

amount of information already possessed by the organization. The greater the

uncertainty, the greater the amount of decision making and information

processing. In less routine and more diverse situations, organizations tend to use

mechanisms with feedback from the operations level to orient their decisions, as

opposed to programming and planning. It is also realized that cross-functional

mutual adjustments become more frequent as operators and supervisors tend to

adjust their unplanned actions with other departments. This will increase the time

associated with each particular task and the organization may therefore lose

performance.

The solution proposed in this dissertation allows a coherent exception handling

that implements mechanisms to involve the affected actors. The implemented

collaboration mechanisms explores new ways to facilitate mutual adjustments and

diagnosis with the potential for improving global awareness of the situation and

supporting situation diagnosis and decision making. Even further, decisions about

activities that will be implemented are instantaneously communicated to all

involved actors. The solution regarded as an exception handling facilitator, aims

to augment organizations ability to deal with exceptions and improve its

performance.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

38

Relating with the previous discussion about situated versus purposeful actions, it

seems that task uncertainty is related with the fit between plans and the concrete

organizational environment, i.e., when task uncertainty is high, situated actions

should prevail. Mintzberg [1999] shows that work predictability and

diversification are intermediate variables in defining the organization structure

and the adopted coordination mechanisms. The usage of a WfMS as the prevalent

coordination mechanism should be analysed according to these studies since they

will be more effective in some situations than in others.

2.3 Exceptions in WfMS

There are several ways to classify exceptions in a WfMS, according to the

different perspectives that are applied to the problematic situation. In the related

literature, some orthogonal criteria for exceptions classification can be found

[Saastamoinen, 1995; Eder and Liebhart, 1995; Casati and Pozzi, 1999; Mourão

and Antunes, 2003b]. In particular, one may consider a system perspective and

assume that an exception triggers an exceptional event in the system. On the other

hand, some exceptions cannot be identified by the system and must be triggered

by humans or external applications [Casati and Pozzi, 1999; Heinl, 1998].

In Section 2.3.1 classifications on exceptions are elaborated. The first one, based

on the classification presented by Eder and Libhart [1995], classifies failures and

exceptions from a systems perspective. This widely adopted classification is

described in the next section. The second classification, described on Section

2.3.2, was presented by Saastamoinen [1995] and adopts an organizational

perspective about exceptions. The dimensions highlighted by this second

classification provide some important characteristics that will guide our solution.

Finally, Section 2.3.3 compares both classifications.

WfMS in Organizations

 39

2.3.1. Systems perspective on failures and exceptions

Eder and Liebhart [1995] characterize failures and exceptions according to a

single dimension, encompassing two types of failures and two types of

exceptions:

• Basic failures – associated with failures on the systems underlying the

WfMS (e.g., operating system, database management system and network

failures);

• Application failures – failures on the applications invoked to execute tasks

(e.g., unexpected data input);

• Expected exceptions – events that can be predicted during the modelling

phase but do not correspond to the “normal” behaviour of the business

process (e.g., a customer reporting a car accident in a car rental process);

• Unexpected exceptions – when the semantics of the process is not

accurately modelled by the system (e.g., changes in business rules or a

change in the order processing of an important client.)

The Eder and Liebhart’s [1995] classification distinguishes two major types of

deviations from the standard execution of a WfMS: failures and exceptions. The

former result from system malfunctions either within the WfMS and the systems

that support it or within the applications that implement the various tasks, where

the later result from semantic discrepancies between the model and the application

environment.

The authors recognize [Eder and Liebhart, 1996] that the currently available

techniques to solve system and application failures do not overcome every

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

40

situation and therefore suggest an escalating concept to transform into exceptions

the failures that cannot be resolved in the level where they occur. Techniques to

react in case of basic and application failures are important characteristics of a

WfMS, since they increase the reliability and availability. These techniques are

discussed on the next chapter to understand how the system reacts to these events

and to discuss their applicability and limits. They were also studied to understand

their usage in our solution. However, they are systemic approaches in the sense

that they use mechanisms developed and inserted into the system to maintain

control without involving the operators. They do not take in consideration the

business semantics and are therefore not in the main focus of this dissertation. We

will therefore concentrate on the expected and unexpected exceptions.

As defined above, expected exceptions can be predicted during the modelling

stage but do not correspond to the “normal” process behaviour. These situations

are usually excluded from the work model in order to reduce complexity.

However, some authors posit that mechanisms should be implemented to handle

these situations because they may occur frequently [Eder and Liebhart, 1995;

Casati, 1998; Chiu et al., 2001; Sadiq, 2000c; Luo, 2001] and cause a considerable

amount of work to handle. For example, consider the example of a client reporting

an accident in car rental company, the company has to reschedule all future rentals

for that specific car until the car is repaired. The “normal” behaviour should have

been the returning of the car to the company, as planned, while the accident

corresponds to a deviation or an “occasional” behaviour: an expected exception.

Chiu [2000] combines the above view with another orthogonal characteristic

described as exception source. The exception source can either be internal, when

the exception is triggered by the system, or external when a user reports the

exception.

WfMS in Organizations

 41

A further classification of expected exceptions was developed by Casati [1998]

and identifies four classes, according to the events that generate them:

• Workflow – triggered when a task or a process is started or ended, it refers

to the execution of the workflow itself. E.g., a deadlock situation or a loop

being executed more times than expected. These events are therefore

synchronous to process execution;

• Data – identified within the task that generates an error condition. The

data events, even though identified within a particular instance can affect a

collection of instances (e.g., a trip being booked twice for the same client.)

These exceptions are synchronous to workflow execution since they only

refer to errors in workflow relevant data (cf. Section 2.1.1) that can not be

used for workflow evolution4. If the error refers to application data

operations, they will result into an application failure that is not considered

in the present class;

• Temporal – triggered on the occurrence of a given time stamp. These

temporal events may be further divided into: timestamps, periodic and

interval. Timestamps occur when a given completion date associated with

a task is not respected (e.g., a car rental not delivered on the agreed time);

periodic events occur on a determined periodical sequence (e.g., every

morning at 9:00); and interval events are associated to time constraints

between 2 tasks. E.g., the maximum time allowed after task 1 finishes

before task n starts. These events are asynchronous to process execution

4 Casati [Casati, 1998] includes workflow relevant data and application data in the data exception class.

However, as it will be discussed in Section 4.4, all application errors are handled in a coherent manner in the

system proposed in this thesis. Therefore, a small adjustment has been made in this class for coherence

purposes.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

42

because their firing does not depend on the execution of any workflow

activity;

• External – activated by external sources, e.g., the above example of a

customer reporting an accident. These events are asynchronous to the

workflow execution.

This classification was developed for expected exceptions, because it assumes that

the detection of an unexpected exception is always external to the system.

However, any of the above classes can result from an unpredicted situation even

though the symptoms are expected. In fact, expected exceptions may also result

in an unexpected situation (e.g., the firing of a predicted timer signals the delay of

a particular task but the reason for the delay is not the expected and the designed

handling procedure is not applicable). The distinction must be based on the cause

and not on the symptoms, i.e., if the situation that cause the expected signalling is

unknown the handling strategy can not be decided in advance and the exception is

unexpected.

Therefore, if during the exception handling procedure it is identified that the

concrete scenario is not predicted, the expected exception should be substituted by

an unexpected exception. Even though the condition that triggered the event is

foreseen (it is programmed in the system) the concrete situation that originated the

condition might not be expected and the handling must follow a completely

different approach. The work developed by Chiu et al. [2001] proposes a

multi-layered procedural approach where a set of previously defined procedures

capture the exception and try to handle it. If the exception can not be dealt by the

procedure it is propagated to the upper procedure level. If none of the predicted

handlers are able to handle the event, it is propagated as an unexpected exception.

WfMS in Organizations

 43

Finally, the definitions found in the literature for unexpected exceptions state that

they result from inconsistencies between process modelling in the workflow and

the actual execution [Casati, 1998]; they are mentioned to be consequences of

incomplete or design errors, improvements or changes in the business manoeuvre

or quality and customer satisfaction issues unknown during the modelling stage

[Heinl, 1998]. From our point of view, any situation that is not predicted in the

model and requires out of the box activities (unstructured activities) is an

unexpected exception. As mentioned in Chapter 1, when the model is no longer

applicable, then the situated characteristics of actions prevail over the prescribed

ones and we face an unexpected exception.

In situations where unexpected exceptions occurs frequently, one should consider

redesigning the workflow model, if it is out of date, or adopting different

technologies based on collaborative work or metamodel workflow systems [Casati

et al., 1999] – user intervention is required. Metamodel workflows (cf. Section

3.2.1) enable users to adapt the workflow model to adjust business requirements.

In this statement, Casati et al. realize that other strategies, different from expected

exception handling, are required when the frequency of unexpected exceptions is

high.

According to Perrow [1999], the increasing complexity of the systems that we are

able to develop and the associated difficulty in assuring linear interactions,

increases the probability of occurrence of failures with manifestations that do not

facilitate the diagnosis. This also increases the complexity of the handling

procedure associated with the failure. The situation is even more problematic if, as

mentioned in Section 2.2, the system is also characterized by tight coupling.

These systems usually require centralized decision making which is in some sense

contradictory to a problem solving activity required by a complex problem

solving situation. Arranging collaborative work environments where information

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

44

flows between the operators with the most adequate knowledge about the situation

at hand and the decision makers may improve the quality of the decision and,

therefore, the reaction to the failure. The myriad of examples presented by Perrow

[1999] demonstrate that complex interactions may happen in any situation: they

are not a specific characteristic of complex systems.

2.3.2. Organizational perspective on exceptions

Saastamoinen [1995] proposed a taxonomy based on the organizational semantics

associated to exceptions. The taxonomy defines a set of base concepts necessary

to construct a consistent conceptual framework that fundaments the

characterization of organizational exceptions. The classes of organizational

exceptions were then obtained from empirical studies. In order to understand and

contextualise the classification, this section starts by describing the theoretical

assumptions. It is followed by the taxonomy description.

According to Saastamoinen, it could be said that any situation for which the

organization has no rule is an exception. This is the line of thought also adopted

by this research. The author defines event as a piece of work to be handled by an

office that is caused by a detected phenomenon or a state of the system. An event

type is a specification of the common features found in certain events. The

concept of rule also plays an important role in this organizational perspective and

is the basis for exception definition. Rules are defined as a formal way of

specifying a recommendation, a directive or a strategy, expressed as “IF premise

THEN action” or “IF condition THEN action”. An event handling rule is defined

as an orderly set of rules that precisely and accurately guide an actor handling

certain types of events. An office procedure has a broader scope and is defined as

WfMS in Organizations

 45

an orderly set of event handling rules aimed at reaching a specified goal in the

office by directing an entire event handling.

Once the association between rules and event handling rules is established, the

concepts of normal event, main line event and variation event constitute the last

step towards the exception definition. A normal event is an event with the

necessary identifying and handling rules. A main line is an office procedure for

the most predictable events of a certain type, and a variation is work that is added

to the main line. Note that a variation is an office procedure for less predictable

but still known events of a certain type. A main line event is a normal event that

can be handled by the main line while a variation event is an event not handled by

the main line but handled by another office procedure. The conceptual framework

for exception definition as defined by Saastamoinen is now created. An

exceptional event (exception) is an event that neither the main line nor the

variation procedures can handle.

As discussed by Saastamoinen, the definition of rule is narrower than the variety

of rules that exists in an organization, e.g., good business practices, precepts,

regulations, conventions, principles, guiding standards, rules of thumb and even

maxims. However, these kinds of rules are not precise enough to establish a

consistent ground to serve as the basis for a framework, even though they

represent the knowledge of the organization.

Saastamoinen developed the taxonomy using the above concepts as well as

empirical studies carried out in an organization, with a special attention to the

social and financial impacts of exceptions. Six different criteria were proposed to

classify exceptions:

• Exceptionality – difference between the exceptional and “normal” event;

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

46

• Handling delay – time elapsed between the exception identification and

handling;

• Amount of work – extra work required to handle the exception when

compared to the normal event;

• Organizational influence – number of people involved in the exception;

• Cause – a measure of the importance of the reason for the exception;

• Rule impact – the changes in the organization’s rules due to the exception.

Three classes of exceptions were identified according to exceptionality:

established exceptions, otherwise exceptions and true exceptions. Established

exceptions occur when the handling procedure for the event is defined but the

rules in the organization do not support users identifying the correct one.

Otherwise exceptions occur when the organization has rules to handle the normal

event but do not apply completely to the case. Finally, true exceptions occur when

the organization has no rules.

According to the organizational influence criteria, exceptions can also be

classified at employee, group and organizational level. Employee exceptions are

situations that affect only the work of one person. Group exceptions affect a group

of people working within the same process, in the same kind of job or in the same

process. Organization exceptions affect the work of persons in more than one

department or project in the organization.

The criteria handling delay, amount of work, cause and rule impact are important

to understand the organizational impact of the exception after the organization has

regained normal behaviour. They are only established after the handling

WfMS in Organizations

 47

procedure is finished. Since they are of no use during the handling phase they will

not be considered in the reminder of this dissertation.

The dimensions adopted in this dissertation to classify exceptions from an

organisational perspective are:

• Exceptionality – difference between the exceptional and “normal” event;

• Organizational influence – number of people involved in the exception;

2.3.3. Comparing and integrating perspectives

By using different perspectives to classify exceptions, we may avoid a biased

view or sensibility about the problem. Exceptions in WfMSs are events that must

be handled by the system and/or the affected users. The users, whenever involved,

should have a clear picture of the event in order to decide on the most suitable

handling strategy. This includes understanding the system behaviour which may

have lead to an exception. The system and organizational perspectives described

in the two previous sections are combined in this dissertation to classify

exceptions and guide both the system and the user reactions. Therefore, it is

relevant to compare the descriptive capabilities of both classifications to

understand their strengths and weaknesses. Table 2.1 lists different dimensions

and the corresponding descriptive capabilities of the taxonomies.

From the table it can be seen that familiarity with the event is the only

characteristic classified by both taxonomies. The remaining dimensions are

particular to each taxonomy. Organizational impact of the exception is only

classified by the organizational taxonomy while detection and type of event are

only classified by the system taxonomy. Since both taxonomies seem to be

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

48

complementary in all dimensions except one, the table is also useful to identify

the dimensions that should be used during unstructured activities support:

familiarity with the event, organizational impact, detection and type of event that

generate the exception. This classification is used to support users.

Table 2.1. Comparing system and organizational perspectives on exceptions

 System Organizational

Familiarity with the event Some Rich

Organizational impact None Rich

Detection: manual or automatic Rich None

Type of event that generate the
exception

Rich None

System taxonomy uses two classes for the familiarity with the event dimension,

the expected and unexpected, where events fall into one of these extremes. They

are either expected and the organization should have rules to handle them, or they

are unexpected and no rules exist. By using three classes, the organizational

taxonomy has more descriptive capability to classify the organizational familiarity

with the event. Class established exception means that the handling procedure is

defined for the event but it cannot be found. When the organization finds the

appropriate handling procedure the handling procedure is defined. Otherwise

exceptions may involve adjustments to organizational rules to fit the situation. For

true exceptions the organization has no rules. These dimensions in both

taxonomies also measure the capability that the organization has to deal with the

event. However, they do not have enough descriptive capability that enables us to

identify if unstructured activities are required to handle the event as a problem

solving activity. It may be the case that just readjusting some tasks is enough to

overcome the situation, e.g., if new legislation requires that for loans above a

WfMS in Organizations

 49

certain amount the clients should have goods in the value of at least 40%, the

organization would have to reprogram its tasks in order to assure this new

condition.

The following section describes a new taxonomy that aims to support users

identifying if the handling of the event should involve unstructured activities.

2.4 New exception classification

In this section we discuss an extended exception classification focused on the

knowledge about the situation processed by the organization and on the planning

capacity. We start by the former dimension and finish with the later. In Section

2.3.1 exceptions were classified as expected or unexpected. However, a concrete

situation may not entirely lye on each of these classes. Instead it may be similar to

an expected situation but not completely equal and the procedure may have to be

adjusted. On the other hand, a situation that is new to the organization

(unexpected exception) may have some aspects similar to a previously event. In

summary, in this thesis we advocate a novel approach to exception classification,

assuming a continuum from expected to unexpected exceptions and integrating

the system and organizational perspectives.

Figure 2.3. shows the expected-unexpected continuum with the Eder and

Liebhart’s [1995] taxonomy bellow the line and our proposed taxonomy above the

line. In our taxonomy, we propose three exception types. The definition of these

types is based on the similarity degree of the situation with the complete set of

rules and past experience that exists in the organization. True expected exceptions

are at the expected limits of the spectrum and are those for which the handling

procedures are entirely defined. For Extended expected exceptions, which initiate

close to the expected limits and extend into the spectrum, some guiding behaviour

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

50

can be drawn from rules and past experience even though some adjustments are

required. A matching technique may be defined and used with the organizational

knowledge base of previous exceptions to find the most similar event and analyse

the similarities and the differences to the actual situation [Luo et al., 2002; Hwang

et al., 1999; Klein and Dellarocas, 2000; Grigori et al., 2001; Weber and Wild,

2004; Adams, 2007]. Then the reaction activities can de drawn based on the

activities that were applicable to the matched event by adjusting them to the new

situation. Finally, Effective unexpected exceptions are those for which the

organization can not derive any guiding behaviour from the organizational

knowledge base. Since the system may not obtain any handling procedure, the

user involvement is mandatory. Even further, some exceptional situations can

represent a strategic opportunity that will not be recognized by the system (e.g., a

user complaining on some non-implemented feature in one good and when the

sales representative is talking to the user he identifies that with minor changes to

the equipment it can solve some other pertinent problem).

Expected
exceptions

Unexpected
exceptions

True expected
exceptions

Extended
expected

exceptions

Effective unexpected
exceptions

Old taxonomy

New taxonomy

Figure 2.3. Three exception types in the expected-unexpected continuum

To overcome effective unexpected exceptions, WfMSs should not rely only on the

existing documented organizational knowledge in the form of procedures

represented as models inside the system. Operators should be provided with the

necessary mechanisms to react in a collaborative way and decide the best solution

for the particular case. Also, according to the discussion in the Chapter 1,

unstructured activities should be supported by this type of systems.

WfMS in Organizations

 51

A new dimension will now be used to further classify effective unexpected

exceptions: the planning capacity for the handling procedure. In this dimension

two classes are identified:

• planned effective unexpected exceptions;

• ad hoc effective unexpected exceptions.

For planned effective unexpected exceptions, a reaction plan can be established

before the reaction starts. It usually means the organization has enough knowledge

about the situation to establish a reaction plan (e.g., a new legislation that the

company has to comply within a determined period of time). For ad hoc effective

unexpected exceptions no plan can a priori be established. The reason may be that

there is not enough knowledge about the event that enables advanced planning of

reaction procedures, or the environmental conditions vary so much that no plan

can robustly be defined. In these situations the situated characteristics of actions

should prevail over prescribed ones (cf. Chapter 1) and the reaction must be

implemented in an ad hoc way (unstructured activities) involving problem solving

among participants both for situation diagnosis and recovery. For example, if a

truck with a very important delivery is stuck on traffic jam users can not define a

priori what is the best action to overcome the situation. It may be the case that

traffic just starts to flow and no reaction is necessary, while in some situations

another delivery by a different road may be the best solution. Users should collect

as much information as they can and react as the situation evolves.

Therefore, ad hoc effective unexpected exceptions require human intervention and

an innovative posture from the organization to deal with the situation. As no plan

is available, human reaction should be map guided, according to Suchman’s

definition [1987]. This exception type is the main focus of the present dissertation.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

52

From now on, they will be referred as ad hoc effective unexpected exceptions or

simply unexpected exceptions when no distinction is necessary.

To effectively implement map guidance, human operators should be fed with

valuable information about the environment and workflow status so they can

decide their actions. On the other hand, the situated characteristics of the actions

also require that users should not be restricted by any model that was previously

defined. We have just introduced the openness and the completeness requirements

discussed in the next section.

After the 9/11 event, officials started to write procedures for clearing the

skies. After some effort, they realized that they would better rely on the

judgement of their controllers and managers. It seems that even after the

event, it was not easy to write the handling procedure, meaning the event

was an ad hoc exception.

On the other hand, at the very start the event seemed to be an expected

exception. However, operators changed their perception during the event

and exception classification was changed to unexpected.

2.5 Openness and completeness

This section describes the two requirements we consider mandatory to implement

the support to unstructured activities: openness and completeness.

The openness requirement states that the system should be able to

collect environmental and workflow status information to support

users on their map guided activities. Users should then be able to look

WfMS in Organizations

 53

for the most relevant information to understand the situation and to

decide on the most adequate activities to carry out.

On the other hand, users should not be restricted to the services provided by the

exception handling system. The challenge is to manage awareness and

consistency with the exception handling activities carried outside the WfMS

scope. Our solution integrates environmental information about external activities

but will not assume control of those activities. The main idea is that unstructured

activities characterize human reactions to effective unexpected exceptions.

Since some operations are carried outside system boundaries, it should be possible

to maintain information on such activities and register any relevant information

that should be useful to involved actors. This requirement is also important to

maintain an update history log of the implemented activities carried out during the

exception handling procedure.

The completeness requirement states that an exception handling

system should consent users to carry out recovery actions without

restrictions, i.e., the flexibility of the exception handling system should

be on par with the flexibility actors have on their daily activities when

working without system control.

This definition is based on the notion that people tend to solve their problems with

all the available means. If any system restrictions are imposed to the users’

primary goals, they will overcome the system [Strong and Miller, 1995; Hayes,

2000].

It is important to note that flexibility implied by the completeness requirement

should be supported by the WfMS enactment service (cf. Section 2.1). When the

system is running, the enactment service is responsible for instantiating the

defined models and guarantee that the processes run according to what is defined.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

54

Therefore, any deviations from the standard procedures must be implemented at

this component.

The consequences of this open perspective on WfMS are profound. For instance,

the restrictions to the common model changes, described in Section 3.2.1, must be

relaxed [Rinderle et al., 2004a; van der Aalst and Basten, 2002; Agostini and De

Michelis, 2000b; Ellis et al., 1995; Casati et al., 1996]. These restrictions are only

applicable if one wants to keep the execution under the specified work models.

However, if the objective is, for instance, to graciously abort a workflow instance,

no consistency check is necessary. Even further, if the user decides to implement

a recovery action that deliberately inserts structural conflicts in the work model,

s/he should be advised on potential problems but allowed to carry out that action.

Consider for instance our 9/11 motivating example. Facing the exceptional

event, air traffic controllers tried to do whatever they could to overcome the

situation. They used any available means to fulfil their goals and established

their goals on the fly as they were collecting information about the situation.

No system could have been designed to model the user’s reaction on

situations like these, simply because they were never considered possible.

The restrictions that air traffic control operators have on their daily

operations to keep system consistency had to be overcome. Take into

consideration a common situation where a plane has to be rerouted due to a

storm: (1) the air traffic control operator contacts the pilot to arrange an

alternative route suitable to reach the destination within the plane’s fuel

capacity; (2) a new route is then agreed; and finally (3) the new process

model for the affected instance is adopted and system consistency is

maintained. However, these restrictions were not taken into consideration

when the order to land all planes was issued on 9/11 at 9:45AM: they would

WfMS in Organizations

 55

land on the closest available airport or being kept on hold until ground space

was found, while giving priority to planes with fuel problems.

We emphasize that although model guidance could not be adopted on 9/11,

map guidance was apparently considered beneficial: the FAA command

centre in Herndon, after the second plane hit the south tower, decided to

start writing on a white board information regarding all planes across the

country suspected to be under hijacker’s control. This situation also stresses

the role of monitoring information and external tools in map guidance.

2.6 Summary

In this chapter we have proposed a new reference model for WfMS that is capable

of handling any type of exceptions. A new component was identified together

with the interfaces with the WFMC reference model components.

Then, our framework was discussed in the light of the Organizational Sciences

perspective in order to help us understanding the impact of the system in the

organization.

Existing exception taxonomies were revised and the dimensions that are used by

the solution to support unstructured activities were identified: familiarity with the

event, organizational impact, detection, and type of event that generate the

exception. Then, a new classification was derived to help identifying if the event

requires unstructured activities support.

Finally, the mandatory requirements the system must implement to support

unstructured activities were established: openness and completeness.

.

Chapter 3

Resilience in WfMS

Since WfMS support business processes, it is very important that they keep

operational during business operations even under unpredictable situations. Their

ability to adjust to actual businesses solicitations and to react to different hazardous

conditions such as failures and exceptions is a core property for a WfMS to actually

support organizations.

The resilient property of a WfMS concerns its ability to maintain a

coherent state and continue supporting business processes after being

subject to any hazardous situations that affect its execution.

It should be emphasized that this is a runtime property of the WfMS, because

predicting any possible causes of failure or exception during design is considered

very difficult or even impossible and makes the system very complex and hard to

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

58

manage [Eder and Liebhart, 1998; Dayal et al., 1990; Casati, 1998; Klein and

Dellarocas, 2000; Mohan et al., 1995]. The strategy to manage failures and

exceptions is to increase system resilience. Resilience requires both robustness, to

avoid system crashes due to failures, and flexibility to adjust to deviations on the

user and organizational conditions.

This thesis focuses on WfMS support to ad hoc effective unexpected exceptions (cf.

Section 2.4). Flexibility is a core concept to deal with these events and should be on

par with the flexibility actors have on their daily activities when working without

WfMS support (cf. completeness requirement Section 2.5). A good compromise

between flexibility and robustness is an important characteristic of a resilient

WfMS [Nomura et al., 1998]. Robustness is important to keep the organization

under control. The main objective should then be to increase flexibility without

loosing all the advantages of the WfMS model and coordination support. This

chapter is dedicated to analyse the most relevant developments on this field to

increase robustness and flexibility: resilience.

Since the early developments of WfMS (the research field was then known as

Office Information Systems), in the seventies, researchers have focused on the

objective to specify high level programming languages that would adjust easily to

business changes [Hammer et al., 1977; Ellis and Nutt, 1980]. On the other hand,

supporting users in organizations also requires systems to work on heterogeneous,

autonomous and distributed environments (cf. Section 3.1) [Worah and Sheth,

1997; Bussler, 1999]. Therefore, researchers had also to develop techniques to

improve WfMS robustness in these environments. However, during the nineties, it

became clear that the systems based only on high level programming languages did

not achieve the de facto flexibility demanded by users. WfMSs did not experience

the market acceptance the researchers were expecting and the main appointed

reason was their lack of flexibility [van der Aalst and Berens, 2001; van der Aalst et

Resilience in WfMS

 59

al., 1999]. Research work was invested on this issue. Many different approaches

have been experimented as different research groups had different understanding on

the type of flexibility that would trigger market acceptance. The techniques to

increase robustness and augment flexibility have been grouped in this chapter

because, even though they highlight different facets of WfMS, they are also

strongly related. Increasing flexibility can have a negative effect on robustness and

vice versa, and we need both to accomplish resilience.

The next section is dedicated to analyse the systemic approaches to resilience. The

systemic techniques assume the objective to provide the WfMS with the necessary

mechanisms to react to basic and application failures, and to expected exceptions.

Systems to handle expected exceptions are inserted in this group because they do

not increase flexibility when users face a new exception at runtime. Special

modelling constructs are used to augment the model’s applicability and their main

advantage is to increase systems robustness when coping with predictable

situations.

The second section proceeds with the human oriented approaches to increase

resilience. The various research lines were grouped in four classes according to

their approach to the problem (classification inspired by [Han et al., 1998]):

metamodels, open-point, other approaches and supporting unstructured activities.

The following section compares the different approaches to augment resilience and

draws conclusions to use in the remainder of the thesis Finally, the last section is

dedicated to discuss the expressiveness capability of modelling assumptions and

their impact on implementing flexibility. In this section the metamodel assumptions

adopted in this thesis are presented together with the operations available to change

the workflow model during enactment.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

60

3.1 Systemic approaches to increase resilience

We have previously distinguished (cf. Section 2.3.1) system and application

failures, where system failures result from malfunctions either within the WfMS

and the systems that support it and application failures result from errors in the

applications that implement the workflow tasks. Systemic approaches aim to handle

this type of events and are defined as:

Systemic approaches are designed to handle failures and exceptions

without human intervention.

However, it has been recognised by the researchers in the field that in some

situations it is not possible to handle the event without human intervention [Eder

and Liebhart, 1996; Casati, 1998; Chiu, 2000]. A propagation mechanism must be

foreseen to transform these situations into unexpected exceptions so they can be

handled with human support. Systemic approaches are therefore limited by the

limited capacity of WfMS to overcome problems without human intervention.

It should be noted that WfMS usually operate in a heterogeneous, distributed and

autonomous environment [Worah and Sheth, 1997; Bussler, 1999] and the designed

solutions should take this aspect into consideration. Heterogeneous, because tasks

run on different settings, ranging from pure transactional (e.g., database systems) to

completely non-transactional environments (e.g., making a phone call) and have to

integrate legacy applications built according to different computing paradigms.

Distributed, because tasks run on different locations (e.g., on computers close to

user’s location) throughout the organization, and with autonomy, since each task

runs on its environment using the available data and resources.

Resilience in WfMS

 61

3.1.1. Failure handling

WfMS use a database management system (DBMS) to manage workflow relevant

data. Transaction processing techniques, developed in the DMBS field, guarantee

data integrity and consistency on system failures. In fact, most of the commercially

available DBMS on the market implement the necessary transaction processing

mechanisms to react in case of failure, returning the system to a coherent state and

enabling forward execution [Casati, 1998]. Therefore, on the event of a system

failure, the DBMS implements a standard failure handling task by restoring a

previous coherent state. The WfMS is then able to proceed with forward execution.

Alonso et al. [Alonso et al., 1994; Alonso et al., 2000], realize that when the WfMS

spans over a wide area network involving several thousand users, hundreds of

thousands of concurrently running processes and several thousand of sites, fault

tolerance is necessary to increase robustness and availability in case of serious

failures. This discussion will not be further developed because this type of approach

is out of the scope of this thesis. As mentioned before, we assume that, if the

system can not recover from the failure, it is propagated as an unexpected

exception.

We will thus focus on application failures because they usually have impact on the

task and are more difficult to handle, considering their associated business

semantics. Application failures must be handled by a completely different approach

than traditional DBMS, because a typical task in a WfMS spans over long periods

of time – long-running activities [Dayal et al., 1990]. If isolation and atomicity

properties of traditional transaction processing systems are enforced, the level of

concurrency and task cooperation required by WfMS are compromised. Even

further, applications may not run on transactional environments since a task can be

a person making a phone call, a meeting or filling a spreadsheet [Alonso et al.,

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

62

1996c]. Advanced Transaction Models (ATM) with relaxed Atomicity,

Consistency, Isolation and Durability (ACID) properties were proposed to

overcome these problems [Georgakopoulos et al., 1995; Jin et al., 1993; Chen and

Dayal, 1996]. For instance, by relaxing the isolation property, other tasks are able

to access data before a transaction finishes. Compensation tasks are defined for

each committed task to allow backward recovery and restoring data consistency and

correctness, and to proceed with forward execution. However, experiments with

ATM showed scarce applicability because they have limited ability to model the

rich organizational contexts where WfMS usually run, which are characterized as

heterogeneous, autonomous and distributed [Worah and Sheth, 1997; Breitbart et

al., 1993; Alonso et al., 1996a]. ATMs rely on traditional transactions, with

enforced ACID properties, as the building blocks of larger transactions with some

relaxed properties. I.e., the building blocks are pure flat transactions, and after each

building block is committed, some properties are relaxed. According to Alonso et

al. [1996a], these solutions are biased from a DBMS view of organizational

procedures which may result in a restrictive model capability. Worah and Sheth

[1997] emphasize the need to look beyond transactional features, as they are only a

small part of the workflow application domain.

Although recognizing ATMs limits on WfMSs, it is important to emphasize they

have a strong theoretical basis to assure data consistency, correctness and recovery

on the event of failures when tasks run in transactional environments. This research

trend was very important during the 90s when some important solutions were

proposed [Worah and Sheth, 1997]. In the following, we will describe some ATM

based approaches.

The ConTract model [Wachter, 1991] defines the notions of scripts and steps. A

ConTract is composed by a sequence of steps executed in a transactional

environment and by scripts that specify the control flow relations between steps.

Resilience in WfMS

 63

Each step is programmed independently from the workflow sequence and is

responsible for the execution of one activity. Isolation and atomicity are relaxed

between steps, meaning that other tasks/transactions have access to the task

resources after completion. Scripts also specify compensation activities that may be

carried out for recovering each committed step. E.g., to enable backward recovery,

it is necessary that all steps already executed and committed to the database be

semantically compensated by an activity defined in the script. Workflow

continuation is then assured after the system is back in a consistent state.

Dayal, et. al. [Dayal et al., 1990; Dayal et al., 1991; Chen and Dayal, 1996]

introduced the notion of spheres of control. An activity can either be an atomic task

or a tree with other atomic tasks. A failing task in a sub-tree may be compensated

using the mechanism previously described. However, if the compensation fails, the

error is propagated upwards the hierarchy where a new compensation is tried on the

parent task. All subtasks specified by the parent are aborted before compensation is

started. The highest node where the compensation is successful represents the scope

of the roll-back operation and is the starting point of the forward execution. Dayal

et al. also introduced Event Condition Action (ECA) rules to detach the detection of

a failure from its handling. This approach increases the flexibility associated to the

failure handling process, since rules are data driven and can be triggered when

some important event is detected. The handling routine can run in the same or in a

different context of the application that originated the event. The system is also

easier to change since it is not always necessary to change the applications:

changing the rule may be enough.

Compensation spheres were introduced by Leymann [1997]. They represent a

collection of activities such that either all activities run successfully or all activities

must be compensated. As in the previous approach, compensation tasks are defined

for each one of the elementary tasks. It is also possible to reinitiate the affected

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

64

branches at the entry points of the compensation spheres, where the user can

specify whether compensation activities should be executed, whether some

administrative work should be carried out, or whether the flow should proceed at

the entry point without any compensation. The model is also based on the notion of

atomic spheres, where ACID properties are reinforced for all tasks within the

sphere.

The notion of atomic spheres was also explored by Hagen and Alonso [2000]. As in

Leymann’s work, atomic spheres have to be successfully executed or they are

undone in the occurrence of a failure. Each atomic sphere may relax one of the

traditional transaction properties of atomicity, isolation or consistency. In spheres

of atomicity, three different levels of isolation are considered: atomic, quasi-atomic

and non atomic. Atomic tasks run on traditional ACID transaction environments

and have no effect if they fail. For quasi-atomic tasks, a compensation activity has

to be defined to undo their effects, whereas non atomic tasks can not be eliminated.

Error handling is defined at the sphere level. This model uses the programming

notion of exception handling introduced by Goodenough [1975], which separates

exception detection from exception handling. Handlers are embedded in the atomic

sphere and execute the recovery activities when the failure is detected.

The approach proposed in WAMO [Eder and Liebhart, 1995; Eder and Liebhart,

1998] is similar to the previous one, but the model is enriched with the notion that

tasks fall into one of three categories: 1) tasks that are compensated with or

without side effects; 2) tasks that do not need to be compensated; and 3) tasks that

can not be compensated. A new type of task, marked as “force”, enables the WfMS

to keep trying task execution until successful. This type of tasks is usually not

problematic, e.g., printing a document. When the compensation mechanism is

initiated, tasks are undone until a decision point is reached and forward execution

may proceed. User intervention is required for tasks marked as “force” that are not

Resilience in WfMS

 65

successfully executed after several retries, and for failures on tasks that can not be

compensated. This human intervention, performed at the task level, can be used to

unblock any situation regarding task execution (e.g., a print task is not

accomplished because there is no paper in the printer) or compensation activities

that require humans (e.g., make a phone call to cancel an order already issued to a

supplier).

Finally, a similar but more flexible approach is proposed by Kamath and

Ramamritham [1998]. In their work, a failing task may initiate a complete or a

partial compensation. The former forces all the context to be compensated, as in

previous approaches, while on the later only the failed task is compensated, and

forward recovery is carried out by an incremental execution of the task (e.g., with

new inputs obtained from task re-execution). With partial compensation, not all the

tasks within the compensation sphere have to be compensated like in the previous

solutions.

The handling of application failures based on transactional approaches offer, in

general, extreme and expensive solutions in terms of lost work [Alonso et al.,

1996b; Worah and Sheth, 1997], because all tasks in the sphere have to be

compensated. If business semantics is taken into consideration during failure

handling it may be possible that not all tasks require compensation. Therefore,

some application failures should be handled as expected exceptions [Casati, 1998].

3.1.2. Handling expected exceptions

Dayal et al [1990; 1991] recognized the rigid compensation policy of the ATM

approaches and proposed the ECA rules to increase flexibility. Casati et al. [1999]

proposed a system based on detached ECA rules. Detached rules run in a different

context, i.e., the action part of the rule, responsible for the exception handling

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

66

procedure, runs in a transactional context different from the task where the

exception was originated. According to the author, in most cases rules do not need

immediate handling and should not interfere with normal process execution. The

language Chrimera-Exc [Casati et al., 1999; Casati, 1998] was developed to specify

ECA rules and augment the WfMS modelling capability to detect and handle

expected exceptions. Each rule can monitor multiple events categorized in four

classes: data manipulation, external events, workflow events and temporal events

(these classes were described in Section 2.3.1.) The action part may execute several

primitives belonging to two categories: data modification and workflow

management. The former stands for operations related to object management, such

as create, modify or delete; while the later are workflow related functions such as

notifications to agents, starting new tasks, cases, sub-processes or reassigning tasks

to different agents.

ECA rules are also used in ADOME [Chiu et al., 2001; Chiu, 2000] to specify

exception handlers in an object oriented WfMS system. A sequence of rule sets is

defined and the exception is evaluated on each set until resolved. The first set is

composed by mandatory rules, which must always be executed (if defined)

whenever the corresponding event is triggered and the condition evaluates to true

(e.g., inform manager about the event). If this set does not solve the situation, the

exception is propagated to the second set. The second set is specific for each task

and particular application context. Since they are specific for a particular task that

should produce outcomes, they are evaluated first. The third set starts from the

current activity and follows up the task hierarchy to identify any applicable

condition to the situation. The WfMS has also built-in generic exception handlers

that are applicable to all activities (e.g., if the resource for a particular task is not

available, the WfMS tries to replace it). If none of these four sets of ECA rules

resolves the exception, the system tries to re-execute the tasks marked as

repeatable, skips tasks marked as optional or tries another path for tasks marked as

Resilience in WfMS

 67

replaceable. Tasks marked as critical, without specific exception handlers, are

classified as unexpected exceptions. Finally, if this last step does not solve the

situation, the exception is propagated to an unexpected exception and human

involvement is requested. However, human involvement is limited to a list of

solutions proposed by the system and unstructured activities are not supported.

Luo et al. [2002] describes a system using a Case Base Reasoning to extend

exception handling. A case repository is maintained with information about

previous exceptions and handling procedures. When an exception is detected, the

intelligent problem solver is consulted and similar cases are retrieved using

similarity measurements weighing the exception description, the workflow model

and the context. By using similarity reasoning, the system enlarges the traditional

notion of expected exceptions. Nevertheless, the authors mention that human

intervention is required whenever there is no matching.

The system purposed by Vojevodina et al. [2005] uses an inferring mechanism to

derive the most adequate strategy to handle the situation. Special effort is placed on

the event classification and the three basic exception handling functions of

detection, diagnosis and monitoring discussed in detail. The diagnosis must be

finished before the handling procedure is initiated. Since user intervention is not

foreseen, the system relies on the organizational knowledge base to conduct the

exception handling procedure.

The system proposed by Weber and Wild [2004] uses Conversational Case Base

Reasoning to implement just-in-time updates to the workflow model. When an

exception is detected the system uses the knowledge base of previous events and

collects the cases with similar characteristics. The user then verifies the case

conditions to compare with the specific event that has to be handled. After choosing

the most adequate case, the handling procedure can be derived. When this new

exception is handled a new case is inserted into the system. When the amount of

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

68

cases relating a particular context becomes significant, the cases are abstracted into

new model rules. The system has therefore a learning capacity. However, the user is

constrained by the existing system knowledge and no unstructured activities

support is foreseen. The system is designed to handle extended expected exceptions

(cf. Section 2.4).

Klein and Dellarocas [2000] also proposed the construction of a knowledge base of

exceptions related to the processes and procedures that may handle them. A

taxonomy of processes is constructed in a way that the generic processes are at the

top and leafs are specific processes. When an exception is raised, a matching

mechanism identifies the handling procedure that best fits the situation. Again, this

technique has the objective of augmenting the system capability to handle expected

exceptions.

Some other approaches use exception mining techniques to analyse, predict and

prevent the occurrence of exceptions. In [Grigori et al., 2001], the authors describe

a system which analyses businesses models and execution logs to extract

knowledge about the occurrence of exceptions. This knowledge is then used to

improve the model or to make organizational changes (e.g., if the system realizes

that a process is late when a given supplier is involved the organization may change

the supplier.) In [Hwang et al., 1999] the authors propose a system that scans over

the previously detected unexpected exceptions and suggests the adopted solutions.

Considering the exception continuum defined in Section 2.4, all these systems are

designed to handle true expected exceptions and extended expected exceptions.

They are designed to increase the system robustness for these exception types since

they try to maintain control in the system. The system proposed by Chiu [Chiu,

2000; Chiu et al., 2001] supports user involvement in unexpected exceptions by

suggesting a list of possible solutions for the case. If the solutions are known to the

system the exception is therefore an extended expected exception. Weber and Wild

Resilience in WfMS

 69

[2004] also consider user involvement in the handling procedure. Users are

supported using the knowledge obtained from previous experiences and therefore

relevant also for extended expected exceptions. The flexibility of these approaches

is limited since they only account for the knowledge inserted into the system. Even

when the system has learning capabilities, they are grounded on the existing

knowledge, and does not support complete new approaches – unstructured

activities, as defined by our approach, are not considered.

The solutions described in the two preceding sections should be implemented by

the WfMS to assure system robustness, but they are not very relevant for the system

developed in this thesis because they do not support unexpected exception

handling. Nevertheless, they were investigated to identify opportunities of their

usage on the proposed system. Of course, all this are low level system approaches

and their applicability is not as immediate as some of the higher level approaches

found to handle exceptions.

3.2 Human-oriented approaches to increase resilience

As mentioned in this chapter introduction, resilience is a system’s runtime property.

Therefore human-oriented approaches to increase flexibility may be defined as:

 Human-oriented approaches are designed to support human

interventions in business processes at runtime, and increase the

systems’ resilience by increasing its flexibility.

Flexibility is related to the operations not predicted in the model that users carry out

during the execution phase of the system in order to accomplish work [Agostini and

De Michelis, 2000a; van der Aalst et al., 1999; Ellis and Nutt, 1993; Casati et al.,

1996]. I.e., when a process is instantiated, the user may implement some operations

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

70

not predicted in the model but made available by the workflow enactment service.

When the intervention requires model adaptation, the process definition tools (cf.

Section 2.1) may be used to design the new model, while the enactment service

replaces the old model by the new and continues operation.

The type of operations available to users depends on the features implemented by

the enactment service. Various approaches to flexibility can be found in the

literature, as different authors have particular understandings on the most important

inhibitors operators face on their daily operations.

We start by identifying the major inhibitors to flexibility and proceed with a brief

summary on how the solutions to overcome them were implemented.

The reasons for the lack of flexibility in current WfMS are:

1. Inability applying model changes to already running instances [Rinderle,

2004b; van der Aalst and Basten, 2002; Ellis et al., 1995]. If some business

requirement demands model adaptation (e.g., due to a legislation change),

the new model should be inserted at runtime and running instances should

be migrated. This feature is not usually implemented in commercial WfMS

[Adams, 2007];

2. Difficulties applying ad hoc changes to cope with very small model

variations [Rinderle, 2004b; van der Aalst and Basten, 2002; Faustmann,

2000; Jorgensen, 2001] while preserving model consistency. If a particular

process requires some special handling (e.g., a special costumer wants to

place an order even though he does not have credit), the user should be able

to bypass the model and guarantee organizational goals. The majority of

existing systems do not support users changing the model of a particular

instance at runtime;

Resilience in WfMS

 71

3. The models currently adopted to represent work are inadequate to flexibility

support [Dourish et al., 1996]. Models should be constraint based, using

general rules instead of specifying every action that should be performed.

Two main research streams can be identified in the systems proposed to overcome

the identified inhibitors [Han et al., 1998]: metamodel and open-point. Metamodel

approaches take into major consideration the structural and dynamic constraints to

model adaptations, while open-point approaches define special points in the

workflow model where the adaptation can be made. Metamodel approaches offer

higher intervention latitude since they are not limited by special points in the model

where the intervention can be made. However, they require model consistency

checks, while in the open-point approaches the consistency checks are not

necessary due to the restrictions in the allowed interventions. The next sections

describe metamodel and open-point approaches in more detail. Since some works

that deserve mention are outside this classification, the following section is

dedicated to them. Other systems supporting unstructured activities are discussed in

the last section.

3.2.1. Metamodel approaches

Metamodel approaches are usually referred in the literature as providing dynamic

and adaptive WfMS and are actually one of the most important research streams to

increase flexibility in WfMS. On the occurrence of exceptions, users should be able

to change workflow models at runtime, adapting them to the new situation and

migrating running instances to the new model without stopping or breaking the

system [Ellis et al., 1995; Reichert and Dadam, 1998; Agostini and De Michelis,

2000a; Casati et al., 1996; Sadiq et al., 2000b; van der Aalst and Basten, 2002;

Weske, 2001]. Two types of interventions are identified in the related literature

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

72

[van der Aalst, 2001; Rinderle et al., 2003; Edmond and Hofstede, 2000]: ad hoc

changes and evolutionary changes.

These interventions may be defined as:

Ad hoc changes are typically applied to a small set of instances and are

a reaction to a particular situation that affects some specific processes.

And,

Evolutionary changes result in a new version of the workflow model

and result from changes in the business processes that the organization

is required to implement (e.g., reengineering efforts or legislation

changes).

Both ad hoc and evolutionary changes must be executed under the system control to

keep correctness, avoiding the insertion of deadlocks, unreachable states or

inconsistencies in the data dependency model. These solutions define a set of

change rules enabling automated correctness checks. Two correctness criteria must

be taken into consideration: structural and state related. The former concerns

schema changes and assures the new model is consistent (cf. the consistency

definition in Section 2.1.1). The state related criterion concern the state of the

instances to be migrated and verifies if they can be propagated to the new model.

Rinderle et al. [2004a] assessed the correctness criterion usually found in the

literature related with dynamic workflow changes. An extension to this work can be

found in [Rinderle, 2004b] where additional proposals are evaluated. After defining

the dynamic change as the ultimate goal of any change, they compared different

approaches based on the semantics of the metamodel approaches. Metamodels were

classified according to the evaluation strategies used to trace instance execution

during runtime as True-semantics and True/False-semantics. True-Semantics use a

Resilience in WfMS

 73

marking mechanism to represent future activities, have a true semantics and include

a representation formalism such as, for instance, Petri nets. True/False-Semantics

use false-tokens to represent skipped execution branches, have a true/false

semantics and are based on a graph representation of the workflow model. A brief

overview of these approaches is presented below to understand the strengths and

weaknesses of the different solutions.

Before initiating the overview, the dynamic change bug should be introduced

because it is a fundamental restriction to dynamic workflow changes. Firstly

introduced by Ellis et al. [1995], the dynamic change bug refers to situations where

it is not possible to transfer the instances from the old model to the new one. For

instance, in the example of Figure 3.1 the execution order of tasks T1 and T2 is

switched5. The instance shown in the figure has already executed task T1 but have

not yet executed task T2. This instance cannot be migrated to the new model

because there is no place where the instance can be located. If the instance is

located at place P1, task T1 is executed twice, and if the instance is located at place

P2, task T2 is never executed. Another common occurrence of the dynamic change

bug is transforming the parallel execution of two tasks (T1 and T2) in a sequence

(T1 followed by T2). Since tasks are in parallel, there will be instances that have

already finished task T2 and not T1. These instances cannot be migrated because

they cannot be placed in any state of the new model: if they were placed after T2, T1

would not be executed, and if they were placed before T1, T2 would be executed

twice.

5 Cf. Appendix A for an overview to modelling workflows using Petri Nets.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

74

P1

P2

T1

P3

T2

P1

P2

T2

P3

T1

Old model New model

The mark
cannot be

transferred to
any of these

places

Figure 3.1. Dynamic change bug for switching the execution order of the tasks

One of the first approaches using True-Tokens was presented by Ellis et al. [1995]

and later refined [Ellis and Keddara, 2000]. The change region is defined as the part

of the net containing all activities affected by the change, the old change region as

the sub-net containing all the affected activities in the old net and the new change

region as the substitution of the old change region in the new net. A special change

class is defined, the synthetic cut over, where both the old and the new change

regions are maintained in the model. Users identify which states in the old net can

be migrated to states in the new net, and define flow jumpers as transitions from the

old net to the new. Flow jumpers are special classes of Petri Net transitions and

allow the migration of markers in the old net to markers in the new net. When a

flow jumper fires, an instance is migrated from the old model to the new one.

Instances that are in states that do not fire any flow jumper must wait until they

reach one (delayed transfer). For this reason both nets are active during the transfer

and until all instances are transferred. Identifying flow jumpers and change regions

is done by humans which can be a time consuming and error prone task.

Aalst and Basten [2002] proposed a True-Semantics approach based on a graph

equivalence notion established by branching bisimilarity. This concept is formally

Resilience in WfMS

 75

defined using Petri Net theory, and informally states that two workflow nets are

equivalent if one can simulate any behaviour of the other after executing any

number of silent actions. Using this notion, the authors present the set of

permissible transformations on a given workflow net. Using simple rules, marks in

the old net are also transferred to the new net. However, the solution does not

handle the “dynamic change bug”, in particular it does not provide a transformation

to switch the execution order of tasks [Rinderle et al., 2004a].

Another True-Semantics proposal based on model equivalence was proposed by

Agostini and De Michelis [Agostini and De Michelis, 2000a; Agostini and De

Michelis, 2000b]. This approach restricts change to free-choice6 and acyclic7

elementary net systems to reduce the complexity required to analyse workflow

modifications. The authors claim that these nets enable the computation of its main

properties in polynomial time [Agostini and De Michelis, 2000a], e.g., the

computation and classification of forward and backward jumps linking the model

states. (A forward jump allows users to jump to a preceding task in the workflow

model and a backward jump to a preceding task. These operations are recognized

by many authors as important operations to exception handling [Agostini and De

Michelis, 2000b; Reichert et al., 2003; Hsu and Kleissner, 1996].) Even further, it

becomes easy to identify the instances that can be migrated to the new model and

the tasks that have to wait until they reach a state where migration can be

6 Free-choice nets are formally defined in Section 3.4. when Petri Nets formalism is introduced, but we will

informally introduce them here to facilitate the reading. In free-choice nets the transitions either do not share

any input task, or if they share at least one, they must share all. They are a special kind of Petri Nets that can

transcribe the workflow model languages that abstract from states between tasks (states are not explicitly

represented). If the states are not represented each conditional transition is represented inside the tasks and all

transitions share the same input places.

7 Acyclic nets do not have cycles.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

76

accomplished. However, some authors criticize this approach because of the acyclic

restriction [Rinderle et al., 2003].

The approaches described above and proposed by Ellis et al. in [1995], Aalst and

Basten [2002], and Agostini and de Michelis [Agostini and De Michelis, 2000a;

Agostini and De Michelis, 2000b] basically abstract data dependencies among

activities. This is an important issue that will be discussed in Section 3.4.

The WIDE system developed by Casati et al. [1996] uses graph representations of

workflow models where iterative loops are allowed and is characterized by

True/False-Semantics. Data variables used by the workflow are also represented in

the model. The system allows the users changing the model based on a set of

schema evolution primitives that guarantee model consistency. The instances for

which the new model can replicate the history of the already executed tasks can be

automatically migrated. On the other hand, if the history cannot be replicated by the

new model, one of the following strategies is possible: keep execution under the old

model; abort; rollback the history part that is not replicated with the new model and

proceed execution under the new model control; or migrate using ad hoc schemata.

When using ad hoc schemata, users define hybrid models that apply to the instances

that have equivalent history.

The ADEPT system was introduced by Reichart and Dadam [1998] and uses

structured models and is based on a True/False-Semantics. Structured models are

based on a set of elementary control structures (sequence, splits and joins) that can

be nested, but not overlapped, in the same way as structure programming languages

[Kiepuszewski et al., 2000]. The authors chose this model restriction because they

claim it is more important to simplify the assessment of consistency, reachability

and change realization than having a rich modelling capacity but where the

associated analysis techniques are very complex. Even though they selected a

different approach, the fundamental assumption is the same as Agostini and De

Resilience in WfMS

 77

Michelis. Model consistency, as defined in Section 2.1.1, is assured if the existing

loops terminate. The adopted modelling language enables the definition of data

constraints between tasks where precedence relations between data providers and

data consumers may be established. A marking mechanism on the tasks affords

identifying the executed tasks and enables instance history reproduction. Due to this

marking mechanism, this modelling language is characterised as having a true/false

semantics. Their work is also based on a sound theoretical ground.

A set of change operations have been defined for the ADEPT model, as well as the

conditions that the instances must fulfil in order to be compliant with the change.

The compliance criterion is further discussed in [Rinderle et al., 2003], where the

reduced execution history of the instance is used to verify the executed tasks. This

reduced execution history is obtained from the total execution history by

subtracting the loop iterations, which is very important if the change is to be

applied inside the loop. In a later work, Reichert et al. [2003] discuss the

implementation of forward and backward jumps at runtime.

The system purposed by Sadiq [Sadiq, 2000a; Sadiq et al., 2000b] is also a

True/False-Semantics approach and enables users to implement the required

changes without restrictions at the first approach. Consistency is verified when all

changes are implemented in the model and before instances are migrated. When

structural consistency is guaranteed, instances are migrated by groups according to

their compliance with the change. The approach follows a strict three-phase

modification procedure of defining the change, conforming and enact.

Another work in the True/False-Semantics area is purposed by Weske [2001].

Model consistency is formally defined. Then, the instance conformity with the

model enables the verification of change consistency. The adopted modelling

formalism requires acyclic graphs.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

78

These approaches enable the adjustment of the business process to the actual

business process requirements. As systemic approaches increase robustness and

maintain control on the system, they rely on the involved actors to perform runtime

changes to business processes. They also rely on the modelling formalisms to

maintain consistency. We believe that these approaches are adjusted to planned

effective unexpected exceptions (cf. Section 2.4 and Figure 2.3) where the user can

plan in advance the new model (or even some minor changes) to overcome

exceptions.

3.2.2. Open-point approaches

Open-point approaches adopt fix points in the model where adaptations may be

performed. These approaches have the disadvantage that allowed interventions are

not complete enough for some situations that require structural changes [Han et al.,

1998]. However, since the interventions are local to a defined point in the model,

correctness issues are easy to validate.

One of the first open-point approaches was developed by Deiters and Gruhn [1994].

In this work, the authors describe the Melmac system where composite tasks may

have an attribute that enables open-point interventions. These composite tasks can

then be replaced during the enactment phase by other composite tasks. Composite

tasks are tasks composed by elementary tasks or by other composite tasks. The

Mobile system proposed by Jablonski and Bussler [1996] enables the insertion of

composite tasks or the replacement of existing ones in the workflow model.

In ObjectFlow, proposed by Hsu and Kleissner [1996], a richer set of operations are

available to the user when an exception is detected. After finishing a task, the user

may jump forward or backwards in the flow, jump to a different location to

implement some special exception handling procedure or insert a new node

Resilience in WfMS

 79

composed by a set of tasks that should be executed. Some operations are available

asynchronously to react to external events, e.g., abort all tasks and jump to a

different location to implement some special predefined tasks.

Recognizing the limitation of having fixed points where the interventions can be

made, the research by Han [1997] proposes generic open interfaces inside each

workflow task where dynamic changes may be made. A predefined set of

sub-models are candidates for a specific task and the user selects the ones s/he

wants to instantiate for a given case.

A similar approach is proposed by Faustmann [2000] in WAM, where the basic

workflow enactment cycle can be broken down to start the adaptation phase. The

user responsible for the task can then start a dialog with another user to negotiate a

delegation process. This second user, after agreeing on the task details, starts a

sub-model to execute the details of the task assigned to him. The model allows

replanning, redoing and extending the work process. After the second user receives

the task, s/he can replan some of the activities needed to fulfil the task and/or

extend the task with some other activities. After the task is finished, the second user

informs the first one. At this stage he can inform that the task should be redone, and

the responsible decides if that is the case, or if it should execute the task in a

different way. This negotiation between the responsible and the second user is in

the same direction as the action workflow approach proposed by Medina-mora et

al. [1992] described in Section 3.2.4.

3.2.3. Other humanistic approaches

Dourish et al. [1996] proposed Freeflow, a constraint based modelling system

aimed to decouple the enactment of task execution from the model. The idea is to

increase flexibility choosing the next action, since models do not prescribe the next

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

80

activity to be executed but only constraints between tasks (e.g., task B can not start

before task A finishes.) The objectives of this approach are: “1) separate the

temporal relationship between tasks, existing in traditional models from

dependency relation between activities; 2) users can engage in the component task

of a process as appropriate to their circumstances; 3) constraint maintenance is an

active on-going process.” The user can execute actions whose constraints are not

yet true, thus violating the constraint(s). However, the system is aware of this

situation and the started activity is not allowed to enter the complete state until the

previous activity is finished. Even though this system augments flexibility, it does

not allow the richness of the interventions available on the described metamodel

approaches.

The system developed by Borgida and Murata [1999] offers one uniform way of

handling deviations in the format of data interfaces, on the data being manipulated

and on the workflow model. The authors use concepts imported from

object-oriented programming languages, namely the exception handling mechanism

and the class hierarchy. Workflows are defined as a hierarchy of classes where each

activity is represented by an object with next states defined in the attributes. Special

activities represent And-splits/joins and Or-splits/joins. Exception handlers are also

workflows. The data being manipulated by the workflow is also declared in classes

including the elementary data types and the associated constraints. Using the class

hierarchy, it is possible to handle every constraint violation by a single super-class.

When the constraint is violated, the system interrupts the executing task and control

is passed to the super-class. Then, by changing the attributes of the objects

associated with the activities, the user can change the next executing task in the

model. This change only applies to the affected instance, because it is implemented

in the object and not in the class definition. Even though this is a uniform way of

handling deviations, it does not handle external asynchronous events. Also, it does

not verify the consistency of changes.

Resilience in WfMS

 81

In the system proposed by Adams et al. [2006] the model is not entirely defined

when the process is instantiated. Using the case context, the system uses an

inferring mechanism, Ripple Down Rules, to derive the most adequate worklet

from a repertoire for a particular job of an entire process. This worklet, that is a

workflow model designed to perform a particular part of a larger process, is then

applied to the job within the process. Worklets may even be designed at runtime

increasing the system flexibility. In this approaches users are constrained by the

original model devised at design time and interventions are restricted to points in

the model where interventions are allowed.

3.2.4. Systems fully supporting unstructured activities

This section starts by describing the work by Agostini and De Michelis [Agostini

and De Michelis, 2000a; Agostini and De Michelis, 2000b] which is one of the few

approaches that has the objective of supporting users in a way similar to this thesis

approach. As the authors state “systems supporting articulation work must on the

one hand, liberate workers as much as possible from the routine articulation work

they need for coordinating themselves (script); on the other, help them to become

aware of the situation where they are performing and to negotiate new cooperative

work arrangements whenever a breakdown occurs (maps). Finally, they need to be

open to continuous change in order to support a continuous update of their maps

and their scripts.” In the proposed system, users can execute the actions inserted in

the scripts during workflow execution but may also initiate a “multimedia

conversation” with another user when some exception situation is detected. These

two components are fully integrated, allowing a conversation to be started during

workflow execution and a workflow enacted during a conversation. The multimedia

conversation component supports the authors Situated-Action perspective

[Suchman, 1987; Winograd and Flores, 1986; De Michelis and Grasso, 1994]. The

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

82

system offers an open architecture where the degree of user involvement varies.

Different degrees of involvement are supported through email integration, where

users may execute workflow actions if they share the computational email model,

where messages embed the execution environment and the data necessary to react

to them. Users that only have access to common email can still be involved in the

cooperative process, since all messages have an initial text explaining the details of

the activity. A template inserted in the message may be filed by the user with the

information details about the task and all documents attached in the messages. The

message is interpreted by a computer that recognizes the effect of the executed

action on the workflow state. In the case the user is not able to finish the work, s/he

may say in the reply message the reason (in a special field).

The modelling formalism adopted in this system was discussed in Section 3.2.1 and

is based on a special kind of elementary net systems, namely free-choice and

acyclic, to enable the computation of the main properties in polynomial time. This

property allows the usage of all the algebra associated with these nets, keeping its

simplicity high to facilitate user interventions. When an exception occurs, user may

perform workflow changes or jumps (forward or backward). Only the interventions

that do not insert inconsistencies are allowed.

It is important to mention two other approaches introducing a broader perspective

over workflow exceptions. Guimarães et al. [1997] proposed an integrated

architecture of formal coordinated processes with informal cooperative processes.

[Saastamoinen, 1995] presents an approach focussed on organizational semantics.

Petri Nets, outside the scope of the WfMS, define the reactions to the various types

of exceptions and should be interpreted as a global organizational reaction to

exceptions.

Another important research in this area was proposed by Bernstein [2000], who

developed a system to support structured and unstructured activities. The process

Resilience in WfMS

 83

spectrum from unstructured to completely structured activities was divided into

four sub-spectra: providing context; monitoring constraints; planning options based

on constraints; and guiding through scripts. The WfMS supports activities in each

of these sub-spectra, where the importance of maps decreases from the unstructured

to structured activities, while the importance of scripts increase in the same

direction. Processes may be transferred between sub-spectra by increasing or

decreasing their specificity level.

In the providing context sub-spectra, the major goal is to provide context to the

users, which can be achieved in the form of check lists, to-do lists and other

documents. The system also integrates with email, online group discussions and

synchronous communication tools. The information processed in this sub-spectra is

not managed by the system. When the user inserts any machine-readable constraint

(e.g., a deadline for a task in a to-do list), the system increases the specificity level

to monitoring constraint, where it monitors every inserted constraint and alerts

users when they change state (e.g., the deadline expired). To enter the planning

options based on constraints, the user must insert a goal or a post-condition in a

to-do task. The system then proposes a series of possible approaches using a

planner to complete the task based on the goals and post-conditions and on the

constraints inserted in the previous sub-spectra. The planner searches in a

repository of possible actions and proposes to the user a list of the actions that

comply with the restrictions. Then, the user may choose from that list or insert a

new action. When the user chooses one action, the system enters the guiding

through scripts level, where a typical model guided workflow is followed.

The ActionWorkflow™8 was proposed by Medina-Mora et al. [1992] and is based

on the language action theory. The theory, developed by Winograd and Flores

8 ActionWorkflow is a trademark by Action Technologies, Inc.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

84

[1986], intends to structure coordination within organizations as communication

acts. The theory has its roots in the speech act theory, which views communication

acts as a form of social interaction oriented towards establishing commitments

between people aimed at transforming the environment. After establishing this

main objective, the authors classify language acts according to a taxonomy that

supports a mutual understanding of commitments. This taxonomy enabled the

development of The Coordinator whose objective, in Winograd’s words, “is to

enable a structure of interactions that is effective for coordination within an

organization. It uses a formal structure in which regular patterns of language acts

are associated with the requests, commitments and declarations of completion. It is

based on the fact that these elements are implicit in all interactions where actions

are coordinated by people, whether or not they are stated explicitly” [Winograd,

1994]. ActionWorkflow™ uses The Coordinator to establish agreements between

performers and clients to implement a desired action. The objectives are negotiated

and agreed between the parties and action proceeds until the client accepts the

result (atomic loop of action). If the performer has to involve more actors in the

action s/he then starts a negotiation with the performer to establish the commitment.

One complete organizational process in ActionWorkflow™ is an interweaving of

these action loops. The communication acts between performer and client are

supported by The Coordinator.

Suchman [1993] criticizes the language action perspective, saying that it does not

account for the “irreducibility interactional structuring of talk.” By structuring

language, The Coordinator acts as disciplining actors rather than supporting their

coordination, and plays the role of accountability for human interactions. In a recent

survey of this perspective, Weigand [2006] recognizes that communication is much

more complex than originally suggested by the speech act theory. Communication

is highly dependent on the context; the same communication can relate to several

speech acts; maintain an intentional ambiguity; and finally, communication is not

Resilience in WfMS

 85

something that occurs within an organization but is intertwined with it, since

organizations also emerge from communication. Winograd also recognizes that the

perspective is not in the main stream of information systems development, as some

authors predicted [Winograd, 2006], even though he expects the importance to

grow with the increasing power to build large scale information systems. He also

recognizes the theory is a “partial account of the reality” because any designed

system cannot embody all aspects of human needs and the contexts where the

theory is effective to support the design of cooperative systems deserve an intensive

study. The assumed bias resulting from the speech act theory must be carefully

understood.

3.3 Discussion

From the above discussion it is important to realise that systemic approaches are

important to increase the WfMS robustness regarding failures and expected

exceptions. Robustness concerns handling expected exceptions, using special

modelling constructs to automatically deal with these events. Systemic approaches

also increase flexibility when dealing with extended expected exceptions (cf.

Section 2.4), because they allow user involvement in implementing minor model

adjustments to the available handling procedures for the corresponding expected

exception. The objective underlying these approaches is to keep the flow of work

under the control of the WfMS without any or with minor human intervention.

However, systemic approaches propagate failures and expected exceptions to

unexpected exceptions whenever they cannot handle them.

When unexpected exceptions are raised, systemic approaches do not provide the

required flexibility. In these scenarios, it is necessary to augment the flexibility at

runtime by supporting the user performing ad hoc interventions or evolutionary

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

86

model changes (cf. Section 3.2.1). The majority of authors in the field recognise the

importance of integrating mechanisms manually controlled by the users (e.g. [Eder

and Liebhart, 1998; Klein and Dellarocas, 2000; Ellis and Nutt, 1993; van der Aalst

et al., 1999; Reichert and Dadam, 1998]) or explicitly state that in many situations

the role of humans is crucial to collect process specific data not available to the

workflow system [Casati, 1998; Luo et al., 2002; Heinl, 1998]. In the approach

developed in this thesis, it is assumed that appropriate systemic approaches are

implemented by the WfMS. Therefore, whenever an exception reaches the attention

of an operator it is unexpected and should be handled by humans. This regards

robustness as a primary mechanism and flexibility as the second line of defence to

increase resilience.

On the systems aiming to augment flexibility, the metamodel approaches rely on

adopting modelling formalisms to support operators implementing changes to the

model and migrating the running instances to the new model. Ad hoc changes are

distinguished from evolutionary changes. The former case regards adaptations of a

delimited set of instances to react to a specific event, while the later relates to

generation of new models reflecting some changing environment reality that will

prevail. The system ability to effectively apply changes, either ad hoc or

evolutionary, is strongly dependent on the modelling formalisms adopted, as

discussed throughout Section 3.4.

Metamodel approaches are crucial to support unstructured activities because they

support users reengineering business processes at runtime. Most importantly, they

can verify if the reengineering keeps system consistency. It should nevertheless be

recognized systemic and metamodel approaches have reached a deadlock, imposed

by the consistency requirement. It seems that researchers in the field have already

achieved results that proof in what conditions the transformations may be valid and

in what conditions they are not valid. The lack of publications in the area seems to

Resilience in WfMS

 87

fundament this statement. Recent publications [Russel et al., 2006; Adams et al.,

2006] still cite the article by Rinderle et al. [2004a] when metamodel approaches

are discussed.

The open-point approaches described in Section 3.2.2, are an important

development towards flexibility because they support direct interventions in the

workflow engine, disregarding the need to implement consistency checks in the

new model. Instance migration is also easier to implement. Still, their flexibility is

limited when higher latitude of interventions is required as they do not go behind

the restrictions imposed by the consistency requirement. Therefore, they are not

suited to fully cope with unexpected exceptions. Section 3.2.3 discussed several

approaches based on a completely different paradigm which disregards the

consistency requirement. These solutions are important to enlarge the researcher

view on this subject. However, none of them resulted in a developed system that

supports unstructured activities with the required flexibility.

The solutions found in the literature handling unstructured activities were grouped

in Section 3.2.4. We will distinguish two of them as they were inspiring for the

present work. The system proposed by Agostini and De Michelis [Agostini and De

Michelis, 2000a; Agostini and De Michelis, 2000b] offers a communication tool

supporting a varying degree of user involvement. Users may dynamically get

involved in an exception handling and requested to implement workflow actions

when necessary. The workflow model may be adapted and users may also jump

forward to a task that appears later in the model, or backwards to a task already

executed. We believe that the system has relevant features for an effective support

to unstructured activities. However, the collaborative diagnosis is not foreseen,

neither mechanisms to collect information necessary to decision making. Also, the

completeness requirement is not contemplated since users may only implement

changes that do not insert inconsistencies. The system proposed by Bernstein

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

88

[2000] is also relevant as user support is foreseen for different contexts in the

process spectrum. Our approach supports the two limits of the process spectrum:

the providing context in Bernstein approach is equivalent to our unstructured

support, and guiding through scripts equivalent to our structured support mode.

However, the features supported on the other two modes, the monitoring constraints

and the planning options based on constraints, may be implemented by our system

during the unstructured activities mode of operation. For example, implementing an

alarm based on an identified constraint may be done by inserting a monitoring task

in our approach. As mentioned before, we have also focused on providing group

collaboration to achieve context awareness and decide on the best activity to

achieve the desired goals.

Figure 3.2 positions the systemic approaches, metamodel and open-point

approaches according to the type of control and planning capacity. The arrow

bellow indicates the direction for increasing flexibility and characterizes how the

approaches are positioned within the same control type. Three classes were

identified in this dimension: systemic, restricted humanistic and unrestricted

humanistic. Systems designed to handle failures and expected exceptions have

systemic control and planed reaction. In fact, the reaction to these events is

pre-planned. Expected exception handling offer higher flexibility because it is

easier to plug-in and change the pre-planned reaction to events. Humanistic

approaches increase the operators’ latitude of intervention and may be applied at

runtime, increasing the flexibility to react to unforeseen events. Humanistic

approaches were split in the figure into restricted humanistic and unrestricted

humanistic. Open point and metamodel approaches are able to support users on

both ad hoc and planned interventions. However, they are not able to support

unstructured activities because of their limited latitude for interventions (restricted

by model consistency).

Resilience in WfMS

 89

Control

Systemic Unrestricted
humanistic

Planning

Ad hoc

Planned 1) Failure
handling

2) Expected
exceptions handling

4) Metamodel3) Open point

5) Ad hoc
Unstructured

More control
Less Flexibility

Less control
More Flexibility

Restricted humanistic

Le
ss

Resilience

Figure 3.2. Approaches classification according to the control type and planning capacity

The characteristics of our system place it on the top right of the figure and is

identified as ad hoc unstructured. Here, flexibility is at its maximum degree and

interventions are fully ad hoc since the planning capacity is very low. They are also

unrestricted by model consistency.

From the figure, we may realize that systemic approaches rely on the stage 1) and

2) on the resilience axes and they only provide systemic support. Metamodel and

open-point are at stage 3) and 4) since they do not provide unrestricted support to

unstructured activities. The only system that integrates the various operating modes

is the one proposed by Bernstein [2000]. However, this system does not account for

integrating metamodel approaches, collaboration support or monitoring actions, as

mentioned above. We believe that this system is developed in the direction of

supporting unstructured activities but lacks some important features.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

90

3.4 The expressiveness of metamodel formalisms and their

impact in workflow changes

Section 3.4.1 discusses the impacts of metamodel assumptions on workflow

dynamic change. The discussion is then used to fundament the metamodel

assumptions adopted in this work. In Section 3.4.2, the available operations to

implement dynamic workflow changes within the adopted assumptions are

discussed.

3.4.1. Modelling languages and their impact in workflow changes

Different modelling languages are used in workflow systems. A good survey on

this issue, discussing the expressive power of the different modelling formalisms,

can be found in Kiepuszewski et al. [2001]. In that survey, existing systems are

mapped to Petri Nets and then analysed and compared considering their

expressiveness capabilities and evaluation strategy. The mapping of modelling

languages to a unique modelling formalism enables a unified view.

Petri Nets, and especially Information Control Nets, a particular type of Petri Nets,

have been one of the first modelling formalisms proposed for Office Information

Systems [Ellis, 1979]. Since then, the use of classical Petri Nets has been widely

adopted by the research community (cf. Appendix A for an introduction to

modelling workflows using Petri Nets). Some important Petri Net characteristics

justify this wide acceptance [van der Aalst, 1998]:

• Formal semantics – workflows are clearly and unambiguously defined;

• Graphical nature – the graphical presentation facilitates interpretation;

Resilience in WfMS

 91

• Expressiveness – they model all the required primitives of workflow

models;

• Properties – based on mathematical studies, a wide theory about Petri Nets

have been developed that derives important properties;

• Analysis – various analysis techniques are available to evaluate concrete

model properties (e.g., consistency and performance factors);

• Vendor independent – this modelling formalism is independent from any

vendor and therefore not biased by any implementation specificity.

In this thesis, whenever a modelling formalism is needed, Petri Nets are use. The

above mentioned advantages are some of the reasons behind this selection.

Nevertheless, a discussion about classical Petri Nets being not capable of modelling

data dependencies among tasks is necessary since it is an important issue on

workflow management.

Data flow among activities and time related issues can not be simulated using

classical Petri Nets. High level Petri Nets, such as coloured or timed, should be

used when these facets have strong impact on the analysis. Coloured Petri Nets

provide the means to simulate data flow (cf. to [Han, 1997] for a discussion on this

issue), while timed Petri nets have been used to verify time related issues associated

to dynamic changes [Ellis et al., 1998]. However, since the complexity of the

algebra associated with these nets increases significantly, they are avoided

whenever possible. ´The adoption of classical Petri Nets, abstracting data

dependencies among activities, seems to have gained some momentum in the

nineties by the research community [van der Aalst, 1998; Agostini and De

Michelis, 2000a; Kiepuszewski et al., 2000; Ellis et al., 1995; Saastamoinen, 1995].

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

92

Reichert and Dadam [1998] criticize this approach because they claim it is critical

to model data dependencies when implementing workflow changes to avoid losing

updated data. Neglecting data dependencies can lead to workflow inconsistencies

when applying ad hoc changes at runtime. In their proposed system, data

dependencies are simulated among tasks. The increased analysing complexity is

compensated by adopting structured workflow models, as mentioned in Section

3.2.1. Structured models can model a subset of the workflows that Petri Nets can

model and therefore have less modelling capability.

In conclusion, since coloured Petri Nets have complicated algebra, authors using

Petri Nets abstract from data dependencies to decrease complexity. On the other

hand, authors taking into account data dependencies restrict their modelling

capability to decrease complexity. It thus seems there is a trade-off between model

expressiveness and analysis capability. For instance, Agostini and DeMichelis

[Agostini and De Michelis, 2000a] (cf. Section 3.2.1) restrict the modelling

expressiveness of their system to improve analysing capability. Since our main

objective is to have higher latitude for human interventions our adopted modelling

approach also neglects data dependencies. With a richer modelling capability, users

will have higher latitude for the intervention without inserting inconsistencies. This

is important because it will be easier to bring the system back into model control

once the exception handling process is finished.

Even though these considerations are important to understand how the metamodel

assumptions impact the system capacity to support unstructured activities, they are

not the core of this thesis. It should be emphasised that the proposed approach

could be implemented on top of any of the described systems supporting

metamodel approaches, or even open-point. However, the result would be a system

with lower latitude for consistent changes. The trade off between model

expressiveness and analysis capability also reflects on the system ability to identify

Resilience in WfMS

 93

inconsistencies and to suggest recovery procedures. I.e., increasing the model

expressiveness also increases the complexity associated to detecting inconsistencies

and suggesting recovery procedures. Therefore, some considerations about the

relation between the metamodel assumptions and the computing support should

also be discussed.

According to Esparza and Nielsen [1994], even for classical nets, the derivation of

the main properties can become unreachable in polynomial time. Some restrictions

are usually made to maintain the required computing capacity within reachable

limits. In [van der Aalst, 2000], Aalst discusses the usage of Free-choice and

Well-structured nets. Free-choice nets are nets that, whenever an arc connects a

place p to a transition t, either t is the only output of p or p is the only input of t

(definition obtained from [Nielsen et al., 1992]). Free-choice nets can model the

majority of the systems existing in the market because they usually abstract from

states between tasks. The main properties of these nets, and in particular the ones

that are most important to this thesis (e.g., consistency and reachable states), can be

derived in polynomial time [Esparza and Nielsen, 1994; van der Aalst, 2000].

Well-structured nets balance AND-Splits with AND-Joins and OR-Splits with

OR-Joins meaning that they can not overlap. The author claims that “good”

workflows can be obtained using this restriction. With this type of nets, consistency

and reachable states can also be determined in polynomial time. Given an arbitrary

net, to decide if it is well-structured can also be decided in polynomial time.

Another type described in Aalst’s work, named S-Coverable nets, seems to be a

basic type for any Petri Net that simulates a workflow model. According to the

author, it seems that there is a strong correlation between S-Coverable nets and

consistency, and that S-Coverability is one of the basic requirements of any

workflow net. The consistent nets designed without being S-Coverable should be

avoided. Unfortunately, it is not possible to derive the properties of these nets in

polynomial time.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

94

3.4.2. Dynamic changes in workflow nets modelled using Petri Nets

Once the underlying metamodel assumptions are established, it is important to

understand how workflow changes can be accomplished. These operations are

important to support humans on their unstructured activities, when they decide to

implement recovery procedures over the affected instances.

To perform a set of changes to the model, following the inheritance-preserving

transformation rules derived by Aalst and Basten in [2002], in order to maintain

model consistency we should consider:

1. Rule 1 – the protocol/projection inheritance (PPS) – insert a consistent net

that leaves from a place and reaches the same place;

2. Rule 2 – the protocol inheritance (PTS) – inserts alternative branches of

behaviour, i.e., it enables the insertion of a parallel thread in the model;

3. Rule 3 – projection inheritance (PJS) – inserts an entire net between a

transition and a place;

4. Rule 4 – projection inheritance (PJ3S) – inserts a parallel branch of

behaviour.

The conditions under which these transformations are valid should be consulted in

the cited paper. It should be noticed that these transformation rules assure that both

nets are consistent, the initial and the transformed one, and therefore the

transformation can be done in both directions. For example, for Rule 1 the user can

either insert or remove a consistent net.

On the other hand, these transformation rules only consider the structure of the

model. Not all the above rules assure that transferring an instance to the new model

Resilience in WfMS

 95

results in a valid instance. Instance transfer rules were also derived for the direct

order of the transformation rule and for the inverse order. Instance transfer from the

original net to the transformed one is governed by the rules:

1. Rule rPPS – the transformation Rule 1 only adds alternative behaviour to the

original net. Therefore the instances can always be transferred to the new

model;

2. Rule rPTS – the transformation Rule 2 only adds alternative behaviour to the

original net by inserting another alternative branch. Hence, all the instances

can be migrated;

3. Rule rPTS – the transformation Rule 3 only adds alternative behaviour to the

original net by inserting a subnet between a transition and a place. Hence,

all the instances can be migrated;

4. Rule rPJ3S – when the Rule 4 is used, some checks have to be carried out. If

the branch parallel to the inserted one is marked by the instance the new

branch must also be marked. The place where the marked is inserted in the

new branch is decided by the user (it can be any of the reachable markings

of the inserted net);

When the transformation is on the opposite direction of the transformation rule, the

inverse instance migration rules are derived:

5. Rule r-1
PPS – corresponds to removing a net that leaves a place and

terminates in the same place (transformation Rule 1 above is used on the

opposite direction). The marks that are in the unchanged net stay in the

same place. The marks that are in the removed net are transferred to the

place where the removed net was connected;

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

96

6. Rule r-1
PTS – corresponds to removing an alternative branch of behaviour

from a net (transformation Rule 2 above is used on the opposite direction).

Again, the mark stays in the same place if it is in the unchanged net. If it is

on the removed alternative branch, the user decides whether to transfer it to

the initial place of the alternative branch or to the end;

7. Rule r-1
PJS – corresponds to removing a subnet from the original net

(transformation Rule 3 above is used on the opposite direction). The mark

stays in the same place if it is in the unchanged net. It is inserted on the

place located after the removed subnet if it is inside the removed subnet;

8. Rule r-1
PJ3S – corresponds to removing a parallel branch (transformation

Rule 4 above is used on the opposite direction). In this situation the marks

inside the parallel branch are removed;

It should be noticed, that jump operations are not studied by this approach. When

these operations are used by our solution, the conditions that govern their validity

are discussed (cf. Section 5.4).

These transformations were developed for a system with consistency level 4 (cf.

Section 3.3). Nevertheless, they are used in our consistency level 5 system that

supports unstructured activities because they concern model consistency when

replacing the system under model control when the exception handling procedure is

finished. They may also be used to inform actors if the transformations they want to

implement during unstructured activities are consistent. However, the main focus of

this dissertation is supporting unstructured activities. It should be emphasized that

any other modelling formalism described in this chapter with the corresponding

transformation rules could be used in our approach. We have chosen this approach

because it has higher latitude for the interventions even though data dependencies

among tasks are not modelled.

Resilience in WfMS

 97

3.5 Summary

In this chapter, we have defined the resilience property for WfMSs. A resilient

WfMS should be robust to resist to failures and expected exceptions, and flexible to

handle unexpected exceptions.

Our review of existing systems identified five levels of resilience: 1) systemic

approaches to handle failures; 2) systemic approaches to handle expected

exceptions; 3) restricted humanistic open-point approaches; 4) restricted humanistic

metamodel approaches; and 5) unrestricted humanistic support for unstructured

activities.

To support unstructured, activities the system must integrate the five levels of

resilience. Integrating the five levels requires the system is able to handle planning

and control issues. Planning, when a plan can be issued before handling is initiated,

and control when the handling procedure starts before any plan or new model is

issued. Few systems integrate these five levels of resilience. The majority of

existing systems restrict planning and control by the modelling formalism adopted.

Even further, no system supports the collaborative nature, user involvement,

monitoring capabilities and decision making involved in level 5.

We have also identified the modelling formalism used in our solution: Petri Nets.

We should also stress that our solution may be implemented using any of the

existing modelling formalisms since our focus is on supporting unstructured

activities. Rules for consistent changes and for migrating running instances were

also discussed. These rules are useful when implementing model changes during

the exception handling intervention. The system uses these rules to inform users on

the consistency of the change and to identify if the system can be placed back into

model control.

Chapter 4

A Solution to Support the Whole
Spectrum of Organizational Activities

This chapter introduces our proposed solution to support the whole spectrum of

organizational activities. The system should be able to work under model

guidance and adopt map guidance support to unstructured activities when an

unexpected exception is detected. Unstructured activities are carried out until the

system is back into a coherent state. Then, the user will either place affected

instances under model guidance or abort them. The overall system behaviour is

modelled by the state diagram in Figure 4.1.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

100

Working under map
guidance: unstructured

activities

Working under model
control: structured

activities

Exception detected

No

Exception handling
service procedure

Yes
Inconsistencies

detected?

Yes

No

Abort

Replace under
Model control

Figure 4.1. Solution’s state diagram

Our proposed solution refers to the computer base system that supports the whole

spectrum of organizational activities including the standard WfMS system and the

developed functionality to support unstructured activities. Users are one of the

entities within the overall organizational system that interfaces with the proposed

solution but are not included.

In our solution, we implement the extended reference (cf. Section 2.1.2). The

developed functionality that supports unstructured activities runs on a workflow

engine. A dedicated model implements the components to support unstructured

activities. When a new exception is detected, the workflow model is instantiated

and the system starts supporting unstructured activities. This corresponds to the

transition from structured activities to unstructured activities in Figure 4.1. The

types of exceptions that trigger this transition have been described in Section 2.4

and classified as ad hoc effective unexpected exceptions. Unstructured activities

are carried out until the situation is back in control. When users realize that the

situation is resolved, and they want to abort the affected instances nothing else

A Solution to Support the Whole Spectrum of Organizational Activities

 101

needs to be done. On the other hand, if the instances should be placed again under

model control, the system should verify whether inconsistencies were inserted and

support users on removing them. When inconsistencies are removed the system is

placed back under the WfMS control, i.e., the control is placed back under the

WfMS system.

This chapter is dedicated to describe our solution. Hence, in Section 4.1 we

present a conceptual approach to the solution. Section 4.2 describes the more

detailed solution state diagram addressing the above mentioned behaviour:

maintain model-based work whenever possible and change to map guidance

whenever the scope is outside the limits under which the work models were

designed. The solution state diagram is implemented by the exception handling

workflow explained in Section 4.3, where the basic exception handling functions

are identified: detection, diagnosis, recovery and monitoring. The main activities

carried out by each one of these four functions and their inter-relations, as the

handling procedures evolve, are also analysed. The detection mechanisms are

discussed in Section 4.4. The following sections are dedicated to discuss the

remaining exception handling functions. Section 4.5 explains the exception

diagnosis, where a special focus is made on the exception characteristics that may

help the users on the selection of the most appropriate actions to carry out during

the intervention. Section 4.6 discusses recovery and monitoring functions into the

wider perspective of the handling strategies that users may adopt. Both functions

represent user’s actions upon the workflow engine even though their objective is

different in the sense that recovery actions try to bring the system back to a

coherent state while monitoring actions collect information about the situation.

The handling strategies adopted during the exception handling procedure are also

classified in Section 4.6.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

102

4.1 Conceptual approach

Figure 4.2 is our proposal for the extended WFMC reference model9 (cf. Figure

2.2) that can support the whole spectrum of organizational activities according to

the state diagram introduced in the previous section. When the system is

supporting structured activities, the traditional WfMS has control over activities

and the exception handling service is inactive. When an exception is detected, the

exception handling service interrupts the WfMS execution and the system starts

supporting unstructured activities. Our solution implements the exception

handling service that connects to the traditional WfMS through interfaces A, B

and C.

Process Definition Tools

Workflow API and
Interchange Formats

Administration and
Monitoring Tools

Other Workflow Enactment
Service(s)

Workflow Enactment Service

Workflow
Engine(s)

Workflow
Client

Applications

Invoked
Applications

Workflow
Engine(s)

Tools to support
unstructured activities

Exception handling service

A

B

C

Traditional WfMS

Figure 4.2. Extended WFMC’s reference model

9 Figure 2.2 is repeated to simplify the reading

A Solution to Support the Whole Spectrum of Organizational Activities

 103

During unstructured activities support, the system supports the following

functionality:

(i) Escalation;

(ii) Monitoring;

(iii) Diagnosis;

(iv) Communication;

(v) Collaboration;

(vi) Recovery;

(vii) Coordination;

(viii) Tools to determine the best solution;

(ix) History log.

The relevant organizational actors should be involved in the exception handling

activities. Appropriate organizational levels with adequate decision authority

should participate in decision making and action implementation. The escalation

mechanism allows the involvement of organizational members in the process. On

the other hand, to support the group of involved users overcoming the exceptional

situation the system must:

1. Support users on understanding the situation – diagnosis;

2. Support users on deciding the most adequate actions to overcome the

situation – recovery;

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

104

To facilitate the diagnosis, users should be fed with quality information about the

peculiarities of the situation at hand. Since information and knowledge about the

event are spread through the organization and the environment, our proposed

solution implements monitoring mechanisms to collect relevant data and enable

knowledge sharing among participants (cf. openness requirement in Section 2.5).

This shared effort should be supported by appropriate collaboration and

communication mechanisms that facilitate common situation awareness. A context

mapping should be provided to users and groups where affected instances and

processes are the main focus. This interaction context, as described by Zacarias et

al. [2005b], provide a “shared empiric, syntactic, semantic, and pragmatic space

for actors” that facilitates knowledge distribution. Diagnosis is also supported by

a situation description component used to classify the event according to several

dimensions that had to be developed by this research as part of the proposed

solution. Since the situation may evolve over time, users may change the

description as new information is collected that changes users’ perception on the

situation.

The decision making process on the recovery actions to implement may be

characterized as a mutual adjustment coordination mechanism, identified in

Section 2.2, when the Organizational Sciences perspective was discussed. The

collaboration and communication mechanisms support the implementation of

mutual adjustment. (Mutual adjustment requires combined of communication,

coordination and collaboration.) These mechanisms facilitate involving the

adequate users on the decision making process.

It should be emphasized that during unstructured activities support, the

coordination facet implemented by the WfMS is relaxed since users gain control

over orchestrating their activities. This unavoidable characteristic of the solution

imposes a special focus: users should coordinate their activities.

A Solution to Support the Whole Spectrum of Organizational Activities

 105

The functionality tools to determine the best solution accounts for application

environments where special tools may be used to support both the understanding

of the situation and the decision process (e.g., operations research algorithms in a

lot manufacturing company may support users on calculating the lots that should

be manufactured when reacting to an unexpected change in demand). These tools

are highly dependent on the application context but they may be implemented as

components of the solution accessible to users during the exception handling

process.

Finally, our solution maintains a history log for the situation description and for

all the implemented activities. When new values are defined for the situation

description, the old values are stored in the historical log. This log may be

consulted during the event or on future similar events.

It is relevant to discuss where the control over the system lies at the different

stages of the handling procedure. The resilience property discussed in the previous

chapter assures that the WfMS is characterized by robustness and flexibility.

Systemic approaches are designed to improve robustness maintaining system

control over activities even on the presence of failures and expected exceptions.

When systemic approaches are unable to solve the situation, human control over

activities becomes dominant. Events are therefore handled first at the level where

they occur and escalated to a different level whenever required. This assures that

events are handed at the adequate level. Figure 4.3 illustrates examples of

organizational trajectories of exception handling procedures. Bellow the line,

control is on the system side and activities proceed according to the model. When

the line is transposed, operators obtain control over unstructured activities. These

activities are carried out until control may be passed again to the system.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

106

WfMS

Operator

Figure 4.3. Examples of possible organizational trajectories for the exception handling procedure

Usually, the exception is detected by the operator involved in a failing task

becomes involved in the handling procedure. Until s/he decides to involve more

users in the process, the exception scope concerns a single operator. Then, the

user may decide to involve more persons and escalate the exception to other

colleagues. If users within the same department are involved, the exception scope

is group. If more than one department is involved the scope will be

organizational.

In the example of Figure 4.4, the employee that detects the exception escalates the

event within his group. Then, the group’s manager realizes that employees from

another department should be involved and the scope becomes organizational.

When other departments finish their collaboration, the exception scope becomes

group again. In the example, the group later recognizes the need to involve other

departments. This example illustrates the dynamic aspects of group composition

during the handling procedure. To assure that the exception has a driver at any

point of its handling procedure, at least a responsible person must always be

associated. Our solution does not support multiple independent groups handling

the event. Everyone involved in the exception handling effort shares the same

context and have the same mechanisms to handle the event and to share

information.

A Solution to Support the Whole Spectrum of Organizational Activities

 107

Organization

Group

Employee

Figure 4.4. Illustration of the organizational escalation of an exception handling procedure

4.2 Solution’s state diagram

This section starts by introducing the state diagram that governs the system

changes from model control to map guidance and then back to model control. The

state diagram is then discussed in the light of the motivating example. The

necessity of mixing both behaviours is also recognized by Zacarias et al. [2005a].

According to the authors, ad hoc behaviour is adopted to react to exceptions.

However, their work aims to define an organizational model that describes the

execution of business activities and not the support of business processes using

WfMSs.

As mentioned before, to support the whole spectrum of organizational processes,

the WfMS should able to switch the operation mode from structured support to

unstructured and then back to structured. The system should follow the

organizational trajectory and users should be involved in the process when

required. Understanding how the system evolves is very important to understand

the solution as a whole. The high level state diagram for one affected process

instance is depicted in Figure 4.5. If an event affects more than one process

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

108

instance, it is replicated to multiple state diagrams managed by the system.

Normally, a process instance is under model control. Basic failures, application

failures or expected exceptions are handled by the WfMS according to

consistency levels 1 and 2 (cf. Section 3.3). In these cases, human intervention is

kept strictly limited to some concrete exception handling activities that may be

applied under model control and do not affect overall system consistency.

Working under model
control

Ad hoc effective
unexpected exception

Support unstructured
activities

Replace under
model control?

Yes

No

Basic failure, application failure, or
expected exception

Inconsistencies
detected?

Yes

No

Change instance model

Apply new model to the
instance

Planned effective
unexpected exception

Abort
instance

Levels 1 and 2

Levels 3 and 4Level 5

Figure 4.5. Solution state diagram for one affected instance

Planned effective unexpected exceptions are handled by the WfMS according to

consistency levels 3 and 4. The techniques to handle this type of exceptions are

not the main focus of our research. We rely on metamodel and open-point

approaches (cf. Section 3.2) to handle these scenarios. After the exception is

detected, the new model is issued and the instance is migrated. Then, the system

may be placed back under model control. In these levels, control is kept in the

A Solution to Support the Whole Spectrum of Organizational Activities

 109

system and human intervention is the necessary to define ad hoc interventions or

new work models.

Finally, systems with consistency level 5 handle ad hoc effective unexpected

exception. Since these systems supports unstructured activities carried outside the

consistency boundaries, i.e., users may insert inconsistencies in the instances (cf.

completeness requirement Section 2.5), when the exception handling is

considered finished by the users, they may decide whether the process instance

should adopt model control, continue outside model control or be aborted. If

model control is the choice, the system will then analyze model inconsistencies

and either redeems model control or notifies the users about existing conflicts,

while continuing supporting unstructured activities. Model consistency analysis

uses metamodel approaches (cf. Section 3.2.1) because they provide higher

latitude of intervention than other approaches.

It is important to define how the system reacts if another exception is raised

during any of the above interventions. Since there are two exception types in two

different states, four scenarios will have to be investigated: two exception types

during unstructured activities; and two during new model. Figure 4.6 shows the

complete state model with system reaction for the four mentioned situations.

We will start by the two situations depicted on the left: exceptions raised during

unstructured activities. When a planned exception is raised, the information

should be inserted into the situation description. Affected users should be

informed because this new information may condition their recovery procedure

(e.g., if a legislation change implies a new instance model for the affected

instance, users should be informed because they may have to take this information

into consideration during their unstructured activities). Users will also take into

account that the instance will be placed under control of the new model if it is to

be placed again under model control. When an ad hoc unexpected exception is

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

110

raised, this new information should be associated to the situation description and

used by the involved actors. The old values for the situation description are stored

in the history log since they may contain relevant information about the situation

evolution.

Working under model
control

Ad hoc
unexpected exception

Support unstructured
activities

Replace under
model control?

Yes

No

Basic failure, application failure, or
expected exception

Inconsistencies
detected?

Yes

No

Change instance model

Apply new model to the
instance

Planned
unexpected exception

Abort
instance

Ad hoc
unexpected
exception

Ad hoc or Planned
unexpected exception

Planned
unexpected exception

Figure 4.6. Complete solution state diagram for one affected instance

The system reaction to the occurrence of exceptions during model changes is

represented by the darker arrows on the right side of the figure. If another planned

exception is raised during the handling procedure of a previous planned exception,

this new situation must be taken into account during the model design. The final

model must account for both exceptions and then the instance should be migrated.

On the other hand, if one ad hoc exception is raised, the system changes to

support unstructured activities associating to the exception the information that

the model must change before the instance is placed back into model control.

Consider, for instance, the 9/11 situation where a plane reports an

emergency to the air traffic control operator. This is an expected exception,

since operators have standard procedures covering such emergency

A Solution to Support the Whole Spectrum of Organizational Activities

 111

situations. Usually, the air traffic control operator will try to arrange for the

nearest airport to accept the plane. Every other plane on the way is informed

and flight plans are redefined if necessary. The airport also starts several

standard procedures handling the emergency situation. On this type of

situations, the air traffic control operator knows the right people to involve

(including authorities, other affected colleagues, etc.), what to do with the

affected planes and the type of information that should be sent to the pilots.

However, on the 9/11 event, after the order to land all planes was issued, the

Memphis control centre operators scrapped normal air traffic procedures

and decided that every controller should follow their assigned planes until

landing. Usually the planes are transferred from a proximity operator to an

airport operator when they get close to the airport. But since the number of

planes to land was very high, they decided that it was more efficient to

eliminate these transfers between operators, reducing the synchronization

and information overloads. Suddenly, the air traffic controllers started

working under a completely new choreography. As reported, all over the

country the controllers had to find out the best solution to overcome the

problems they faced in their areas to safely land the planes. During this

period, the air traffic control system in the US was operating with

unstructured activities.

When the situation finally got under control, i.e., officials were convinced

that no hijacked planes were in the air, they smoothly started rescheduling

and allowing commercial airplanes to take off to their destinations. The

system therefore was step by step being lead to model control.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

112

4.3 Basic functions

As mentioned before, unexpected exception handling is a problem solving activity

that requires understanding the situation and implementing the required activities

to overcome the exceptional situation. We distinguish four functions for the

problem solving process of unexpected exception10 handling:

• exception detection

• situation diagnosis

• exception recovery

• monitoring actions

The majority of authors identify the first three functions [Sadiq, 2000c; Dellarocas

and Klein, 1998]. However, as it was discussed before (cf. the openness

requirement in Section 2.5) and will be further developed bellow, we posit that

monitoring actions play a key role in unexpected exception handling.

Since detection is only important for triggering the handling procedure and is

independent from the other functions, this section only describes the other three

functions. Exception detection is described in Section 4.4. In our solution, we

advocate an intertwined play between diagnosis, recovery and monitoring until

the exception is resolved. That is to say, the diagnosis is not considered to be

complete on the first approach but rather through an iterative process where

different actors may collaboratively contribute and information collected from

10 Remember that we will use unexpected exceptions to refer to ad hoc effective unexpected exceptions

whenever it is not necessary to distinguish them.

A Solution to Support the Whole Spectrum of Organizational Activities

 113

monitoring and recovery actions is also used to improve it. It should also be

stressed that both the exceptional situation and perception of the situation may

change along this iterative process, as new information is made available and

being processed by humans.

As an example, using the 9/11 case, the already mentioned white board

displaying information about the planes suspected to be hijacked was very

important to manage the situation and decide the next steps. The white

board was constantly being updated and it reached 11 planes (including

flight 77, which was indeed hijacked.)

This type of activities, categorized in our solution as monitoring actions, is

necessary to control the progress of the whole exception handling process. They

allow users to collect up to date information related to running process instances

and tasks. Considering again the open nature of the framework, these monitoring

actions may also bring environmental information to the system: i.e., the white

board was an external component that had to be linked with the system, for a time

period, in order to facilitate the exception handling. Other examples of external

services would include, for instance, geographical information systems.

After diagnosis, users may carry out recovery actions. The open nature of the

solution indicates that the recovery actions do not always run in the inner system

context and thus some linking mechanism is necessary to bring environmental

information to the system. This issue will be addressed later in more detail.

Figure 4.7 shows the solution handling cycle, illustrating the intertwining play

between diagnosis and recovery. The handling activities are initiated by the

exception detection. Finally, when the exception is solved the handling activities

finish. This cycle corresponds to the unstructured activities support box in the

state diagram of Figure 4.5.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

114

Finish unstructured
activities

Diagnosis

Insert monitoring
actions

Implement
recovery actions

Solved?
N

Y

Exception
detection

Figure 4.7. Exception handling cycle

Recovery and monitoring actions may be grouped into a broader concept named

handling strategies. During unstructured activities, actors use the available

information to decide the next steps (that can be information collecting and/or

recovery actions). Every implemented action, either monitoring or recovery, may

bring new information to this cognitive process that proceeds until the situation is

considered solved. Users are supported by these information flows that contribute

to situation awareness and implement a feedback process where new information

is always added to the system and may be used on the coming decisions.

4.4 Exception detection

Exception detection has been extensively studied in previous works [Dayal et al.,

1990; Casati, 1998; Chiu et al., 2001; Sadiq, 2000c; Mourão and Antunes, 2004c].

We distinguish between manual and automatic detection because they behave

A Solution to Support the Whole Spectrum of Organizational Activities

 115

differently from the user’s perspective. As will be explained bellow, synchronicity

to process execution is also important to understand how the detection

mechanisms can be implemented.

The exception classification that classifies exceptions according to the event that

generates them is most important for the detection phase. The classes identified in

Section 2.3.1 were: workflow, data, temporal and external. We propose two new

classes in this classification: non-compliance and system/application. We present

a summary of the classes already defined, for the sake of comprehensiveness, and

a definition for the new ones:

• Workflow – triggered when a task or a process is started or ended and

refers to the execution of the workflow itself. These exceptions are

synchronous to process execution;

• Data – identified within the task that generates an error condition

associated to the data. They refer to workflow relevant data and are

synchronous to process execution;

• Temporal – triggered on the occurrence of a given time stamp. These

temporal events may be further divided into: timestamps, periodic and

interval. These events are asynchronous to process execution because their

firing does not depend on the execution of any workflow activity;

• External – activated by external signals and are asynchronous to the

workflow execution.

• Non-compliance events – triggered whenever the system cannot handle the

intended process due to differences between the tasks and the goals

modelled by the process; Asynchronous.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

116

• System/application events – triggered when the system is not able to

recover from lower level failures, such as database, network or application

failures (lower level failures are propagated as semantic failures [Eder and

Liebhart, 1996]). They are asynchronous to process execution.

When an expected exception that can not be handled by the appropriate procedure

is propagated to the unstructured activity support system, that exception is

characterised according to the original event, i.e., any of the above mentioned

classes.

Classes of the type data, temporal, workflow and system/application are

automatically detected by the workflow engine and delivered to the exception

handling service (cf. Figure 4.2). The implementation of detection mechanisms

will be described in Section 5.3. However, it does not mean that all exceptions in

these classes are always automatically detected. They can only be detected if the

corresponding exceptional behaviour is predicted in the model or in any special

construct supported and implemented by the WfMS. The workflow modeller must

always predict the situation before the instance is running. If, for example, an

unpredicted infinite loop (workflow exception) is being executed and no special

construct is inserted, the exception must be manually triggered. External and

non-compliance exceptions are manually triggered by users.

The synchronicity affects the way special constructs can be inserted in the system

to automatically detect the exception. If the event is synchronous to process

execution, standard modelling constructs can be used. When the event is not

synchronous, some special modelling mechanism should be used in the detection.

These issues will be discussed in more detail in Section 5.3 in respect with the

implementation of the automatic detection mechanisms.

A Solution to Support the Whole Spectrum of Organizational Activities

 117

Finally, as mentioned in Section 2.3.1, application data errors are treated as

application errors and result in an exception of the system/application type. This

enables a coherent treatment of every exception raised by an application. Only the

workflow relevant data that did not result in an application error, although

triggering a workflow exception condition, results in a data event type. These

exceptions occur, for example, due to data type errors or workflow conditions

affecting more than one instance that the application does not detect (the same trip

being booked by two different instances is a good example.)

4.5 Exception diagnosis

A good understanding of the exceptional situation is crucial for users to take the

right decisions on which recovery actions to adopt. As already mentioned in this

chapter, providing rich context information is critical for convenient map

guidance. The information should also support the diagnosis and decision on the

best handling strategies. The diagnosis is mostly dependent on a detailed and

accurate assessment of the exceptional event.

During the 9/11 example, in the FAA’s centre at Herndon, “as Sliney, the

operation's manager, moves around the room, a handful of air traffic

specialists follow. Together, they have decades of experience and no one

hesitates to share an opinion. But without good information, Sliney knows

that any decision might be risky. Amid the shouts and chatter and

conflicting reports, he reminds himself: Don't jump to conclusions. Sort it

out.” The claim “not to jump into conclusions, sort it out,” is one key aspect

in our solution: the recovery actions should be driven by qualified updated

information. On the other hand, the observation that the most qualified air

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

118

traffic controllers are at the room is also very relevant and highlights the fact

that the persons involved in the situation is also an important issue.

Using the classifications described in Section 2.3 and some new added

characteristics, we propose the following dimensions:

1. Scope – process specific when only a set of instances is affected; or cross

specific when various sets of instances are affected. At least one instance

must always be associated to the exception;

2. Detection – automatic if the exception is automatically detected by the

system; or manually if the exception is manually triggered;

3. Event type – refers to the event that generates the exception and can be one

of the following types described in Section 4.4: data, temporal,

workflow, external events, non-compliance or system/application. The

assessment of the event type is mandatory, because it directly impacts the

handling phase;

4. Organizational impact – employee, when only a limited number of

employees in the same department are affected by the exception; group,

when more than one department is affected; and organizational, when the

overall organization is affected. A responsible person must always be

associated to the exception;

5. Difference to the organizational rules – established exceptions occur

when rules exist in the organization to handle the event but the right ones

cannot be found; otherwise exceptions occur when the organization has

rules to handle the normal event but they do not apply completely to the

particular case; and true exceptions occur when the organization has no

rules to handle the event;

A Solution to Support the Whole Spectrum of Organizational Activities

 119

6. Complexity of the solution – easy, when the optimal solution can be easily

obtained in an acceptable time; hard, when the optimal solution is not

obtainable within an acceptable time. In this dimension, complexity is not

defined as the overall complexity of the handling procedure, but rather an

estimation of the possibility to define a cost function based on the

available data. Whenever such a function exists, this dimension provides

an estimate of the complexity degree to calculate the optimal solution;

7. Reaction time – quick, when the reaction to the exception must be as fast

as possible; relaxed, when the reaction time is not too critical but some

decisions must be taken within a time frame imposed by the instance(s);

long, when the reaction time is not critical. This information is mandatory;

8. Time frame to achieve solution – quick, when the situation is expected to

be resolved in few working units, normally minutes or hours; relaxed,

when the time frame is more relaxed, although being a parameter to be

taken into consideration, normally measured in working days; and long

when time is not a critical issue.

As detailed bellow, only the scope, organizational impact, event type and reaction

time dimensions must be set by the detection function. The other dimensions may

by set or not by the users, according to their perceptions of the situation. This

avoids inserting irrelevant or inadequate information into the system. Note also

that the characterization of a specific exception may be redefined by the users

whenever more information is collected. The old values are always preserved in a

chronological record.

Bringing back to our discussion the 9/11 case, and considering the first

exceptional event, the detection was manual and occurred when the

controller realized that AA flight 11 stopped answering calls and the

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

120

transponder signal disappeared from the radar screen. This process specific

situation affected only one instance. The time frame to achieve solution was

relaxed, since the controller had to follow the event realizing if it was a

serious trouble with the plane or some transitory malfunction. Some other

diagnosis information would include: it was a data event type; the

organizational impact affected only one employee and the difference to the

organizational rules is an expected exception, where the controller knows

the right procedure to apply.

The dimensions listed above are the ones that can be classified immediately

after the exception is detected. The complexity of the solution is therefore

undefined, since the controller does not yet know what is going on with the

plane. The controller will thus monitor the situation until the context or the

perception of the problem changes.

When the controller heard a strange accent in the cockpit saying through an

open microphone “we have some planes, Just stay quiet and you will be

OK,” the situation changed and the exceptional event was escalated to the

control centre in Herndon. This is a type of situation to be followed by the

central office with high priority: the organizational impact changes to

include the national operations manager while the time frame to achieve

solution is maintained in relax mode. The time frame to achieve solution

may be relaxed, because hijacked planes usually follow some course to an

airport and thus do not demand fast recovery, such as an immediate crash

emergency.

When the second hijacked plane hit the south tower, the diagnosis changed

again. The time frame to achieve solution had to change to quick, the

organizational impact now affected the whole air traffic control

organization, the complexity of the solution changed to high and the

A Solution to Support the Whole Spectrum of Organizational Activities

 121

difference to organizational rules corresponded to a true exception. As a

consequence of the new diagnostic, the national operations manager started

wondering how many and what planes were in the hands of the hijackers.

He realises that he needs to collect more information, e.g. to identify the

affected instances.

The information listed above is a general characterization of the exceptional

event. The above information should be complemented with additional data:

1. Affected workflow instance(s) – a list of the affected workflow instances for

process specific situations or a rule identifying the set of affected instances for

cross specific situations. As mentioned above, this list must have at least one

element;

2. Affected task(s) – identification of one or several tasks where the exception

was identified. For instance, interval events and workflow events are

associated with one specific task while data events may be associated with

several tasks;

3. Data structures – associated to data events and store information about the

data that originated the exception;

4. Data timers – associated to temporal events, they store information identifying

the expiring timer and the type of exception (i.e., timestamps, periodic or

interval);

5. Model deviations – this information applies to non-compliance events and

identifies a list of tasks that should be inserted, modified or removed.

The following additional parameters enrich the global characterization:

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

122

1. A brief textual description of the event. This information applies to external

events, since they can be triggered by humans;

2. Root cause – a textual description, produced by a human, with the perceived

root cause for the exception.

3. Person responsible – a name of a human that is responsible for the exception

(cf. Section 4.1). This name may be either selected by the system from the list

of persons associated to affected tasks or produced by a human, as with the

root cause mentioned above. The person responsible is a mandatory field

meaning that a name from inside the organization must always be associated

to the exception.

4. Impact – for every affected instance, the system may also provide information

about deadlines and the impact to the organization (based on metrics such as

the diversity and number of affected tasks).

The following information is mandatory: event type, at least one affected

workflow instance, person responsible and reaction time. The event that triggered

the exception belongs to one of the classes mentioned in Section 4.4. During the

detection, it is easy to identify the event type and therefore this information should

be provided. Since one exception affects at least one running instance, our

proposed solution assures that one instance is always associated to the event. As

mentioned before (cf. Section 4.1), to assure the exception has always a driver, a

responsible person must always be defined. The responsible may change during

the handling procedure. Finally, to assure that events requiring quick reactions

receive operator’s attention, the reaction time is also mandatory.

A Solution to Support the Whole Spectrum of Organizational Activities

 123

4.6 Exception handling strategies

The following dimensions to classify exception handling strategies are identified:

(i) Objective of the intervention – further division presented below;

(ii) Communication type – synchronous or asynchronous. This dimension

classifies the way people exchange information to share the situation

knowledge/understanding. This is a common CSCW classification [Ellis and

Nutt, 1993] that enables choosing the most adequate tool to support

collaboration;

(iii) Collaboration level – one person solves the situation; several persons solve

the situation in a coordinated mode; or several persons solve the situation in

a collaborative mode. It should be emphasized that this dimension is focused

on implementing recovery actions. The involved actors may implement

recovery actions in a coordinated mode, meaning that they are aware of each

other’s activities, while in collaboration mode they only know a general

description of the intended objective agreed during the last collaborative

section;

(iv) External monitoring – there is either enough information to achieve the best

solution or additional information must be collected from the environment

to support situation diagnosis and decision making. (Gathering information

from the system (internal monitoring) may be achieved by inserting tasks and

is not regarded as a strategy.);

(v) Tools to determine the best solution – either no external decision aids are

required or there is a need of advanced support to achieve the best solution.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

124

This information is associated to every exception raised in the system. It must be

emphasized that, likewise diagnosis information, the handling information may

change over time as more data about the exception is obtained. A chronological

record of the selected values is kept in the system to be consulted by the involved

users.

The objective of the intervention is related to the high level objective of the

exception handling procedure. It is further divided into [Eder and Liebhart, 1996;

Agostini et al., 2003; Reichert et al., 2003; Chiu et al., 2001; Sadiq, 2000c]:

• Abort – abort the instance. This objective is further divided in: hard or

compensate some tasks. In hard abort tasks are terminated with no further

action, while in compensate some tasks some activities will be carried out

to compensate some of the already executed tasks in the model before

instance are terminated;

• Decrease time – decrease completion time to meet deadline;

• Increase time – increase completion time to release resources;

• Recover from a system failure – after a system failure, the objective is to

replace the system back in a coherent mode so that the normal flow can

proceed under control of the WfMS;

• Recover from an application failure – after the failure of a specific task,

the objective is to recover the application and place the system back in

automatic mode;

• Lowest penalty – recover to achieve the lowest penalty possible, i.e., the

exception has already impacted negatively the organizational goals, and

the objective is to minimize that impact;

A Solution to Support the Whole Spectrum of Organizational Activities

 125

• Delay this task – this objective can be useful to release some resources

necessary to increase the execution time of another process/instance;

• React to environmental changes – this normally requires a model change.

This classification affords linking the high-level handling strategies with a

specific set of tasks available at the system level. The communication type

expresses how the collaboration support component will interconnect the persons

involved in the handling process. Two types of communication are differentiated:

synchronous and asynchronous. In synchronous communication, the involved

actors exchange information in real time (in face-to-face interactions or using

some means to transfer information), whereas in asynchronous communication

information is exchanged in deferred time meaning that information is not

received at the same time it is sent.

As mentioned in Section 4.1, coordinating activities among users is an important

aspect of our solution because the coordination facet of traditional WfMS is

relaxed. During unstructured activities, users have the responsibility of

orchestrating their activities. The two modes of operation identified in the

collaboration level strategy reflect the concern with coordination. In a coordinated

mode, users may choose any available tool to coordinate their activities. These

tools may be computer supported, such as sending an email or start an instant

messaging conversation, or without computer support, such as telephone

conversations or face-to-face meetings. If users chose a computer based tool, the

solution may support the collaboration effort and it is carried out within the

solution’s boundary. However, if a non-computer based tool is the choice, the

collaboration effort is carried outside the solution’s boundary and no information

can be automatically collected from this interaction. In a collaborative mode, the

coordination aspects are not relevant since users implement their activities in an

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

126

independent way. They coordinate their efforts only on the next collaborative

section.

Still considering the coordinated mode, one has to be aware of concurrent changes

made to work models. When ad hoc changes are applied in a coordinated mode,

every change is seen as an independent change and the resulting work model

results from the composition of previous changes. Therefore, the structural and

dynamic checks are made on the instance with respect to this new model.

However, in the case of concurrent ad hoc changes carried in a collaborative

mode, the work of Rinderle [2004b] must be taken into consideration, because

actions carried out by different users without any prior agreement may conflict. In

her work, Rinderle discusses the composition of two independent changes

performed over a process model. Instance migration on the composite change is

also discussed. Two classes of change composition are identified: 1) when the

changes are made on disjoint regions of the model; 2) when both changes regions

overlap. For disjoint regions, the composition results from implementing the

changes in a sequence. When the regions overlap, an overlapping classification is

introduced from equivalent changes to minor overlapping. Migration strategies are

provided for all classes.

The external monitoring dimension specifies if environmental information is

necessary to resolve the exception. The need to reference such external

information has already been identified by Basil et al [2005]. In this thesis it is

suggested that not only diagnosis but recovery as well may require referencing

external information.

The item tools to determine the best solution identifies any additional tools

necessary to implement the best recovery solution. This affords linking the

framework with external tools supporting the decision processes.

A Solution to Support the Whole Spectrum of Organizational Activities

 127

In the motivating example, after the second plane hit the south tower, the

national operations manager realized the need to involve everyone

collecting external information necessary to identify how many planes were

possibly hijacked and where they would be heading: they decided to use a

white board to display such information. External monitoring was necessary

and the tools to calculate the best solution involved a white board. The

adopted communication type was synchronous and the collaboration level

addressed several persons solving the problem in a collaborative mode.

Furthermore and most important, the plan to overcome the situation was not

defined for every control centre. According to the available airports and

number of planes they had to land, controllers implemented different local

strategies. In particular, at the Memphis control centre, all controllers

followed their planes until landing, instead of passing the planes between

them. Operators favoured collaborative mode with respect to coordination

mode to reduce response time.

Some empirical relationships between diagnosis and handling strategies where

derived to support users deciding on the most adequate strategy that should be

adopted for a particular situation. However, since these relations were not

formally validated they are included in Appendix C and no further discussion is

made on the subject.

4.7 Summary

In this chapter, we have established our conceptual approach, based on the

extended version of the WFMC’s reference model, to support unstructured

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

128

activities, relying on the organizational trajectories of the exception handling

procedure and the organizational escalating concept.

The solution’s complete state diagram, regulating the five consistency levels

identified in the previous chapter, was also defined. We have settled our focus on

the consistency level 5 – supporting unstructured activities.

The basic functions that a level 5 system should support were then identified as:

detection, diagnosis, recovery and monitoring. Moreover, diagnosis is not

considered finished at the first approach and an intertwined play between the

diagnosis on one side, and the recovery and monitor functions on the other,

improve the situation understanding.

The taxonomy used to classify the event was also established. This taxonomy

supports users on situation diagnosis and on the classification of the exceptional

situation. The recovery techniques were also classified according to the adopted

strategies users may choose during the exception handling process.

Chapter 5

Solution Architecture and
Implementation

In this chapter we describe the solution’s architecture and its integration with the

environment, the WfMS and the actors involved in the exception handling

process. The architecture is derived from the extended reference model described

in Section 4.1 and is integrates four components: Exception Description, WF

Interventions, Collaboration Support and Exception History.

After establishing the architecture, the solution implementation by a dedicated

workflow is discussed. The workflow implements the exception handling process

described in the solution’s state diagram of Figure 4.1, including the basic

problem solving functions: diagnosis, detection and monitoring. The remaining

function, detection, is implemented by User Interfaces (UI) in the case of manual

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

130

detection, or by specific workflow constructs inserted into the model and designed

to automatically detect specific exceptional events. The implementation uses the

OS open source suite of components. Implementation details are also described.

Therefore, in Section 5.1 we establish the solution architecture and the interfaces

with the WfMS and the environment. Section 0 is dedicated to describe the

exception handling workflow. Then, in Section 5.3 we describe the mechanisms

used to implement automatic exception detection. Instantiating the exception

handling workflow in manual and automatic exception detection is also described.

Section 5.4 proceeds with the recovery and monitoring operations that users may

implement during unstructured activities. The impact of the operations on the

instance’s consistency is also discussed. Section Error! Reference source not

found. is dedicated to the implementation details. We start by introducing the OS

suite and then explain how exception recovery and handling are implemented.

Section 5.7 describes user interaction with the exception handling service by using

UI examples. Finally, in Section 5.8 describes the exception data model where the

exception related information is stored.

5.1 Architecture

To introduce the solution’s architecture we will repeat in Figure 5.1 our extended

reference model. However, the figure has been reorganized to place the Exception

Handling Service at the top. Other components were readjusted in conformity.

Additional detail was also added to the figure. In the architecture design, we have

mainly focused on the interface with Workflow Enactment Service because our

objective is to control the system behaviour at runtime. The monitoring

functionality implemented by the Administration and Monitoring Tools

component is important to collect data from the system. We assume the existence

Solution Architecture and Implementation

 131

of primitives to implement this functionality if the solution is to be implemented

on a generic WfMS. The administration facet of this component is not relevant

since we did not study how to administer the exception handling system. We will

also assume that the user has access to a Process Definition Tools component if,

during the exception handling process, a new model should be issued. Primitives

to transfer the model to the enactment services are also important and it is

assumed that they exist, as usual on common WfMS. Finally, we have not studied

the interoperability with other enactment services. The components under study

are highlighted in the figure.

Process Definition Tools
Administration and
Monitoring Tools

Other Workflow Enactment
Service(s)

Workflow
Client

Applications

Workflow
Engine(s)

Exception handling
service

C

Traditional WfMS

E

B
A

Tools to support
unstructured activities

Workflow API and
Interchange Formats

Workflow Enactment Service

Workflow
Engine(s)

Exception detection

Workflow API and
Interchange Formats

Workflow Enactment Service

Workflow
Engine(s)

Exception detection

Invoked
Applications

Figure 5.1. Detailed version of the extended reference model reorganized. The external interface E

and an exception detection component placed close to the enactment services were added.

Figure 5.2 is a detailed view of the highlighted components of Figure 5.1

comprising the Exception Handling Service, the Workflow Enactment Services

represented by the workflow engine, the Exception Detection Component, and the

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

132

workflow client and invoked applications represented by the tasks. Interface A

and E are also illustrated. Dashed lines represent information flows whereas

uninterrupted lines represent control flows.

Collaboration Support

Exception
History

Task/ActivityTask/Activity

Exception
Description

Int. E

WF Interventions

Inserted
Monitoring

Task
Task/Activity

WF Engine

Manual
Exception
Detection

Automatic
Exception
Detection

Environment

External
facilities

Tools to support
unstructured activities

Int. A

Exception handling service

Traditional WfMS

Figure 5.2. Solution’s architecture and its integration with the WfMS and the environment

Four components are identified as belonging to the exception handling service:

Exception Description, WF Interventions, Collaboration Support and Exception

History. Two distinct interfaces are also identified: interface A and E. The

External Facilities, illustrated at the top, represent any exception handling activity

carried outside the solution’s boundary and will be discussed bellow together with

the interfaces.

Solution Architecture and Implementation

 133

The Exception Description component supports the diagnosis process described in

Section 4.5. The WF Interventions component implements the functions

associated to objective of the intervention described in Section 4.6. The

Collaboration Support component implements the communication type and

collaboration level mechanisms also described in Section 4.6. Finally, the

Exception History component stores all relevant information associated to the

exception handling cycles. Implementation details on these components will be

presented in the following sections.

The traditional WfMS supported by the proposed solution is represented at the

bottom of Figure 5.2. Naturally, the workflow engine plays a central role. Close to

the engine, the Automatic Exception Detection component collects information

from it and, when an exception is detected, control information is transferred to

the Solution’s Architecture. The Inserted Monitoring Task at the bottom right

represents a task to collect information that users decided to insert during the

exception handling activities. (It does not belong to any process being executed by

the system.)

Concerning interfaces, the interface A links the exception handling components

with the WfMS, while interface E links these components with the users and

external environment. Interface A is used to collect information about the WfMS

status, to implement low level recovery actions (launch/suspend tasks, etc), and to

automatically detect and signal exceptions.

Interface E connects the exception handling service with users to enable manual

exception detection and interaction during exception handling activities. Details

on this interaction are illustrated bellow. Interface E also connects to External

Facilities supporting environmental information gathering about the operations

carried outside the framework’s scope. Concerning environmental information

gathering, remember that our discussion about completeness requires users not be

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

134

restricted to the framework itself. Two types of activities carried out in the

external context are differentiated: 1) information gathering, collaboration and

decision making; and 2) recovery actions. The former are related with the use of

external communication, coordination, collaboration and decision making tools

(e.g., meetings, telephone conversations and operations research techniques). The

later address any external recovery actions necessary to resolve the exception. It is

our aim that, for any activity executed outside the framework’s scope, some

environmental information is inserted in the system for logging and monitoring

purposes.

Collaboration Support

Exception
History

Task/Activity

Exception
Description

Int. E

WF Interventions

Inserted
Monitoring

Task
Task/Activity

WF Engine
Automatic
Exception
Detection

Environment

Int. A

Traditional WfMS

Basic functions

Diagnosis
Manual
Exception
Detection

Monitoring

Tools to support
unstructured activities

Exception handling service

External
facilities

Recovery

Task/Activity

Figure 5.3. Solution’s architecture and its integration with the WfMS, environment and operators’

basic functions

Solution Architecture and Implementation

 135

In Figure 5.3, the three remaining operator’s basic functions (cf. Section 4.3) are

added: diagnosis, recovery and monitoring. The diagnosis, recovery, and

monitoring functions are carried out by the involved actors with support and

orchestration from the components available at Tools to Support Unstructured

Activities. Figure 5.3 represents the information and control flow through

interface E between the operators and the system and between External Facilities

and the system.

5.2 Exception handling workflow

Ellis and Keddara [2000] state that a process change is itself a process that can be

modelled. Therefore, like Sadik [2000c], it is claimed in the present thesis that it

is better to cope with ad hoc effective unexpected exceptions in work models

using work models. The occurrence of an exception starts the exception handling

workflow modelled in Figure 5.4.

This section discusses how this workflow implements the service components

during the exception handling activities. Exception detection, the details of task

implementation and UIs will be discussed throughout this chapter.

When an exceptional event is triggered, the system instantiates the exception

handling workflow process and initialises some of the exception description

parameters described in Section 4.5. There are two alternative ways to instantiate

this process: either by system (interface A) or by user detection (interface E).

They have been separated because these two tasks initialize the process in

different ways. A responsible person must always be identified during detection

(cf. Section 4.5). For system detected exceptions it is assumed that the responsible

may not be the most indicated person to describe the situation. Therefore, the task

Edit Info First Responsible is available right after detection where user defined as

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

136

responsible by the system has the opportunity to define the new responsible and

proceed to the following task: Edit Exception Info. For user exceptions this task is

the first task after detection.

The purpose of the Edit Exception Info task is to specify some event parameters

that the system or the user was not able to specify, or that should be redefined by

the person responsible. For system detected exceptions, there is data that the

system is not able to initialise and context information that requires human

interpretation, e.g., the root cause falls in the first case, while the list of affected

instances and person responsible fall in the second case. For user detected

exceptions, the responsible person (that might not be the same person that

triggered the exception) can redefine some of the parameters.

Abort Instances or
Place in Running
Mode

Define New
Responsible

Change
Association of
Instances

Edit Exception
Information and
Classification

Handling
Finished?

User
Detection

Change
Affected
Users

Inform
user(s)

Collaboration Support

Exception Description WF Interventions

Collaborate

Insert
External
Info

External Info

Choose
Instance(s)

Execute
Recovery
Action(s)

Choose
Instance(s) or
Task(s)

Insert
Monitoring
Action(s)

Monitor
Information

Follow up
Recovery Actions

System
Detection

P1

P2
P3 P4 P5 P6

Inconsistencies
detected?

No Yes

Edit Exception Info
by Responsible

Figure 5.4. Exception handling workflow

After this task the system enters in five parallel threads:

Solution Architecture and Implementation

 137

• Collaboration support;

• Exception description;

• WF Interventions;

• Insert external info.

The sub-models delimited in the figure by the dashed rectangles implement these

components. The WF Interventions is implemented by independent recovery and

monitoring threads. The interface E, identified in Figure 5.3, is implemented by

the thread External Info.

The Collaboration Support component supports users specifically collaborating

within the scope of an exceptional event. The tasks implemented by this

component (see Figure 5.4) enable involving more actors in exception handling

and implement the collaboration mechanism. The Collaborate task implemented

by this component can be synchronous or asynchronous and at any time the users

may choose which type to use. When asynchronous collaboration is used, any

involved actor can send a message to any or all of the colleagues handling the

exceptional event. The company email system or any other asynchronous alert

system available in the organization may be used to notify the users that they

should check the WfMS. Synchronous collaboration support depends on the

application domain, since it can be implemented by a phone conversation, mobile

phone messages, chat over a computer or even face-to-face conversations. In any

case either the exchanged information or references to the collaborative actions

are stored in the Exception History component. If it is not possible to

automatically integrate this information, the users are requested to insert such

references and any special additional comments. Further developments of this

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

138

collaborative component including integration with existing collaboration

technologies will be subject to future research.

The WF Interventions component is implemented with two threads: implement

recovery actions and insert monitoring tasks. The specific actions implemented by

this component enable users to implement recovery activities to bring the system

back into a coherent state. They will be described in Section 5.4.

The monitoring thread affords users to insert monitoring tasks that store

exceptional relevant information in the Exception History. Since this information

is chronologically stored, the user may monitor the system evolution. Finally the

External Info thread affords users to insert environment relevant information in

the Exception History that can be lately used in the decision making process.

Exception handling activities proceed until the system is placed back in a coherent

mode. When users identify that coherency has been achieved, they execute the

task Handling Finished? (at the bottom of Figure 5.4) removing the marks from

places P2 to P6 and suspending the support to unstructured activities.

Before finalizing the exception handling process, it is necessary to verify whether

inconsistencies were inserted into the affected instances (cf. Section 4.2). If that is

the case, the system must continue the support to unstructured activities and a

mark is placed again on places P2 to P6, activating again the parallel threads. This

is the last test shown in the model of Figure 5.4.

The discussion about the system usage can be enforced by using scenarios. In the

remaining part of this section two examples are used. In the first case, the usage of

the components are discussed regarding the involvement of some more actors in

the exception handling procedure without any concrete scenario (organizational

escalation), while in the second the 9/11 motivating example is used.

Solution Architecture and Implementation

 139

For the first example, if a user decides to involve more actors in the exceptional

event s/he uses the Collaboration Support component. In the task Change

Affected Users the new actors are associated to the exception. Then, in the task

Inform Users, they are informed (e.g., email or mobile phone messages) that there

is an exception to be collaboratively resolved. The diagnosis phase proceeds using

the Collaborate task, so the other actors share their views of the present situation.

Finally, they decide to insert two monitoring actions in the work model and two of

them will be responsible for the follow up. Once any special event regarding these

monitoring actions is triggered, the group is informed and the recovery action may

proceed. The process is repeated until the exceptional situation is overcome and

handling activities may finish. Figure 5.5.a) illustrates the organizational

escalation for this exception handling process where the first affected user

involved more actors from the same department in the handling effort. Figure

5.5.b) illustrates the organizational trajectory that initiates in the system where the

process was being executed, and proceeds with the operator that signalled the

exceptional event. Operators carry on the handling procedure until the event is

overcome, when the control is placed backing the system.

Organization

Group

Employee

WfMS

Operator

a) Organizational escalation a) Organizational trajectory

Figure 5.5. Organizational escalation and trajectory for the first scenarion

On the 9/11 motivating example, as soon as the first hijacked plane stops

answering the controller calls and its transponder signals disappear from the

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

140

screen a new exception is manually signalled. However, since it is an

expected exception it is under model control with a special procedure. Only

when the voice in the cockpit saying “We have some planes” is heard the

exception is migrated to unexpected exception and the workflow is

instantiated with the plane as the affected instance, and involving the

controller, the supervisor and the national operations manager. The

Collaboration Support component is used to escalate the exception to the

supervisor and to the national operations manager, who becomes in charge

of the exception handling.

When the second plane hit the south tower, the FAA’s command centre uses

the Exception Description component to change the reaction time to quick,

the difference to organization rules to a true exception and complexity to

high. They use the collaboration component to involve all relevant people in

the event.

The first nationwide recovery decision was to stop all takeoffs. This

decision could have been spread through the WF Interventions component,

affecting all upcoming instances, i.e., no new instance could be initiated. On

the other hand, a new monitoring task was started on the entire organization:

get information about any suspicious plane. Again, this could have been

done within the architecture boundaries. A new task could have been started

using the WF Interventions component, involving every control centre, to

collect their information: they could only insert a single line of information

for every suspicious plane. The information received from the control

centres could be displayed on a large screen using a data show, relieving the

personnel at the control centre in Herndon from collecting this information

and writing it the wall. Even further, if a plane stopped from being

Solution Architecture and Implementation

 141

suspicions, the associated line would disappear from the screen as soon as

the associated control centre deleted it.

Some other local activities could have also been supported by this system

after the action to land all planes was decided; e.g., by involving the

neighbourhood airports on monitoring tasks, the air traffic controllers could

decide on the fly what planes to route to each of them and airport personnel

would be informed on line. On the other hand, airport personnel would

inform the air traffic controllers on the available capacity to improve their

decisions.

5.3 Automatic and manual exception detection

The Automatic Exception Detection component is placed close to the workflow

engine in Figure 5.3 to collect information about executing tasks, workflow

control data and workflow relevant data to detect exceptions. When an exception

is detected, the Automatic Exception Detection component transfers the control

through interface A to the exception handling system by instantiating the

workflow discussed in the previous section. The workflow is instantiated by firing

the System Detection task. As discussed in Section 4.4, the exception type’s

workflow, data, temporal and system/application can be automatically detected.

The implementation of identification mechanisms for each of these types will be

described in this section in terms of the modelling constructs used in the detection

and the initialisation of the describing information. External and non-compliance

exception types are manually detected and instantiate the workflow using the User

Detection task in the model. The same process is used on the above mentioned

types when detected by an operator.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

142

The detection of workflow events is performed by pre-conditions and

post-conditions structures (cf. Section 2.1.1). Section 2.3.1 identifies four types of

workflow events: start/end of an instance; and start/end of a task. For the start of

an instance a pre-condition is inserted on the first task of the model whereas for

the end of an instance a post-condition is inserted at the last task. The task start

situation is detected by a pre-condition in the task and the end task by a

post-condition. E.g., if the modeller wants to assure that a loop is not executed

more than n times a pre-condition can be inserted in the first task of the iteration.

When the iteration counter reaches n the pre-condition triggers the Automatic

Exception Detection component that instantiates the exception handling

workflow. Information describing the event (cf. Section 4.5) is associated to the

exception identifying the executing task, the affected instance, the user

responsible, the reaction time and type of situation that triggered the event: e.g.,

the affected task, if it is a loop structure or if there is a deadlock. For manual tasks

the user responsible is the person executing the task while automatic task have

always an associated user that is the responsible person for any exception. The

reaction time is defined in the post-function and is therefore fixed for the model.

Post-conditions are used to identify the presence of a data exception on the

completion of a given task. Post-conditions detect the error on the data and trigger

the automatic detection mechanism that instantiates the exception handling

workflow. A special type of data exceptions affecting more than one instance was

identified in Section 2.3.1. To detect these exceptions cross-instance checks must

be carried out by the post-function. As with workflow events information

describing the situation is associated to the exception where for data events the

involved data structure is also kept. The process to select the responsible user and

to set the reaction time is the same as in the previous case. Finally, the

identification of all affected instances is also necessary when more than one

instance is affected by the event.

Solution Architecture and Implementation

 143

In Section 2.3.1 three classes of temporal events were identified: timestamp,

periodic and interval. The identification mechanism for each of these classes will

be described separately.

The method used to identify the interval class, is depicted in Figure 5.6. Assume

that the workflow designer would like to define a time interval constraint between

tasks 1 and n of Figure 5.6.a. Figure 5.6.b shows how the workflow specification

has been changed to incorporate that constraint. If Taskn is executed before T1

fires, the constraint was respected and no temporal event is triggered. However, if

T1 fires before Taskn, a token is placed on P2 and the system triggers an

exceptional event. The transition T2 implements the same task as transition Taskn

and is inserted in the specification to assure that the workflow execution will not

stop on Taskn if an interval event is triggered.

Task 1 Task n

. . .

Task 1 Task n

. . .

a) Before synchronization b) Synchronization of task 1and task n

P2

P1

T2T1

Figure 5.6. Identification mechanism for the interval class

When T1 fires the exception handling workflow is instantiated. The affected

instance can be suspended or allowed to continue depending on the specific

handling activities. If the model is kept running, when the flow of work reaches

the place before Taskn, T2 will be enabled instead of Taskn. After T2, is executed

the work proceeds as normal.

For the timestamp the detection mechanism follows a similar scheme, where

Task1 is the initial task and Taskn is the task identified in the timestamp. In this

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

144

situation the timer is fired when the predefined date/time is reached. The

exception handling workflow is instantiated as in the above example.

. . .
Task 1 Task n

P1

T1

Figure 5.7. Identification mechanism for the periodical class

Figure 5.7 shows the Petri net used to implement the triggering mechanisms for

the periodical class. The original model is shown on the top (tasks 1 and n, as in

Figure 5.7.a) where task 1 is the first task of the workflow and task n is the last

one. Place P1 and transition T1 where inserted to implement the periodical class.

While the instance is running the timer is also running. When the time specified is

reached one periodical event is triggered and the timer restarted again. The timer

stops with the firing of the last transition in the workflow. Once again, when the

transition T1 fires the exception handling workflow is instantiated.

As in the previous events, information is associated to the exception identifying

the timer, the instance and the responsible person.

Finally, the system/application events have characteristics similar to external

events [Mourão and Antunes, 2003a], although, in some circumstances, the excep-

tion may be automatically identified, e.g., the system is able to identify that a

database server stopped without requiring human intervention. For these events,

the describing information is obtained from the underlying system where the

event was generated while the responsible person is one user identified as the

systems supervisor. For system exceptions all instances are affected and reaction

time is set to quick. Instance execution is not suspended. For application

exceptions it is possible that the affected instance can be detected. However, in

Solution Architecture and Implementation

 145

some situations that is not the case. If the affected instance can be identified it is

associated to the exception and time is set according to the global properties of the

workflow model (i.e., global properties define if the instances are critical). If the

affected instance can not be identified, all instances are affected to the exception

and time is set to quick.

External events are a particular category of events, because they cannot be de-

tected by the system as mentioned before. Thus, this type of event must be

triggered by a human or by an external application. As mentioned in the beginning

of this section, the instantiation of the exception handling workflow is achieved

using the User Detection task in the model of Figure 5.4. For human detected

exceptions, the operator is asked to initialise the exception related information

through a dedicated UI, whereas for external application detection a public

method is used where all the mandatory information is issued as parameters. This

method uses the value in reaction time to select the way to inform the responsible

person of the presence of a new exception.

Finally, non-compliance events correspond to situations where the desired process

either deviates from the model (by requiring some special treatment) or the model

is not applicable to a particular context. In this type of situation the system

requires some additional information regarding the model, i.e. additional tasks,

tasks that should be modified or removed from the model, etc. Due to the intrinsic

nature of these events, they are dependent of the specific context that must be

assessed by a human. Furthermore, these events may affect several tasks and

processes. As in the previous scenario the user initialises the mandatory

information using a dedicated UI implemented by the task User Detection in (cf.

Figure 5.4).

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

146

5.4 Recovery actions, monitoring actions and support

users removing inconsistencies

In Section 4.6 the high level objectives of the intervention were integrated into the

handling strategies. To support users implementing these objectives, a set of

quasi-atomic recovery actions are available. Involved actors may also implement

recovery actions before deciding the most adequate objective for the entire case,

e.g., to react to some partial erroneous condition even before the whole recovery

procedure is decided. These quasi-atomic recovery actions increase operator’s

latitude during unstructured activities support. The Recovery Actions thread

shown in Figure 5.4 affords operators to implement this functionality on the se-

lected workflow instance(s). The responsible person first selects the workflow

instance(s) and then chooses one of the available actions to apply over them. The

user may only select instances that are in the same state because the state affects

the consistency results of the operation. This way, the consistency results are valid

for all selected instances.

The impact of implementing the recovery actions on instance consistency is also

discussed. At the end of the section, we describe how to support users removing

inconsistencies when the instance is to be placed again under model control.

Monitoring actions may also be implemented using the ad hoc refinement

operation. Ad hoc refinement inserts threads executing in parallel to the actual

instance execution and therefore constitute the natural choice to implement

monitoring. Figure 5.8 illustrates the introduction of the monitoring task Tmonitor in

parallel to the actual executing task Tn+1. The marked place Pn indicates that the

proceeding task is available for execution. Therefore, the insertion of a new thread

Solution Architecture and Implementation

 147

with the monitoring task is equivalent to the transformation in the figure. Notice

that task Tm within the model is chosen as the join for both threads.

Pn

Tn

Pn-1

Pm

Pm-1

Tm

Tn+1 Tmonitor

Inserted
task

Figure 5.8. Inserting monitoring task

The following list of actions is currently available in the implemented solution

[Eder and Liebhart, 1996; Agostini et al., 2003; Reichert et al., 2003; Chiu et al.,

2001; Sadiq, 2000c]:

• Suspend/resume instance – this action involves suspending or resuming

instance execution;

• Abort instance – abort the instance. As mentioned in Section 4.6 the

instance can be aborted in one of two ways: hard or compensate some

tasks;

• Backward jump – jump to a previous executed location in the work model.

Some already executed tasks may have to be compensated;

• Forward jump – jump forward to a task in the work model;

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

148

• Jump – jump to another location in the model (this location is neither in

the previous executed tasks nor in the upcoming tasks);

• Move operation – move one task to another location in the model;

• Ad hoc refinement – execute one action from a pre-defined list;

• Ad hoc extension – choose a new path or change the model.

Further implementation and functionality details about the recovery actions are

the subject of the remaining part of this section. When needed, modelling

constructs based on Petri Nets are used to discuss how the actions are

implemented. The impact of the intervention on model consistency is also

investigated. As mentioned in Section 3.4, metamodel assumptions based on Petri

Nets will be used to derive conclusions. The same logic could also be used if

some other metamodel assumptions were used even tough the conclusions might

differ. The tool used to investigate the impact on model consistency does not

impact our solution state diagram (cf. Figure 4.1 later refined in Figure 4.5 and

Figure 4.6). Whatever the tool used, if the user is supported on detecting and

repairing inconsistencies the state diagram is still applicable. Therefore, since we

have already showed that such a tool exists, its implementation is not further

discussed.

With the suspend/resume action the responsible person can suspend the execution

of a specific instance. Later on, by issuing another action, the instance can be

changed to the running state. During the suspended state no tasks can be initiated.

However, the tasks that have already started are not aborted by the system. The

persons attached to those tasks are informed of the situation. These operations do

not affect the consistency of the running instances.

Solution Architecture and Implementation

 149

The action to abort an instance is to change a workflow instance to the end state

to assure that no more actions defined in the workflow model will be executed. If

some tasks require compensation activities they should be identified by the

involved actors. The compensation task is instantiated in the exception handling

workflow using the quasi-atomic action ad hoc refinement (described bellow). As

in the suspend action above users attached to tasks that are being executed are

informed on the situation. This operation does not affect the consistency of the

running instances since they will be aborted.

Backward jump skips to a previous executed task, while forward jump skips

forward to another task in the workflow instance. The required conditions to

maintain model consistency will be highlighted and the discussion will proceed by

analysing the impacts of not following the restrictions. As in [Reichert et al.,

2003], backward jumps are jumps to actions in the history of the running instance.

Two illustrative backward jump situations are depicted in Figure 5.9. In Jump1 the

system reaches a deadlock on place P5 because the set of places (P2, P3) does not

have any marking. Therefore, place P3 will never be marked and transition T4

never fires. Jump2 is correct because the target place of the jump is before the

AND-Split implemented by transition T1. To avoid this situation the following

criteria is defined:

The subnet starting at the destination place (P1 in Figure 5.9) of the jump

and finishing at the original place (P6 in Figure 5.9) can be isolated

(including every node in every branch leading from the start place to the

end and every arc that finish or start on those nodes.) From now on the

delimited subnet will be referred as jump subnet;

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

150

Jump1Jump2

P1

P2 P4

P3 P5

P6

T1

T2 T3

T4

Figure 5.9. Backward jump

If the jump complies with the mentioned rules it is consistent because it does not

insert inconsistencies in the model. (This rule is proofed in Appendix B.) On the

other hand, if the jump is not compliant with this situation a reachability test must

be performed, i.e., after changing the mark from its original place to the

destination this new obtained marking condition is tested for reachability from the

initial marking. If the marking is reached then the jump is consistent, otherwise it

is not. It should be mentioned, as stated in Section 3.4., that verifying reachability

is a complex problem that might not be solvable within a limited period of time.

Therefore, if the model is not within any of the restrictions mentioned in the cited

section, this computation might not be attainable. A time out should be used to

prevent the user for waiting indefinitely. If the user decides to proceed with the

jump even though it is inconsistent or there was a time out, this information is

associated to the instance. This statement holds for every reachability test

mentioned in this section.

Figure 5.10 represents the two different ways to implement a Forward jump as

proposed by Reichert et al. [2003]: either the tasks in between are skipped (Figure

Solution Architecture and Implementation

 151

5.10.a) or executed in parallel with the tasks starting at the origin of the jump

(Figure 5.10.b).

P1

Pn

P1

Pn

Tn Tn

Pm

Pm-1

Pn-1 Pn-1

a) b)

T1

Tm

Pd

T1

Tn+1

Figure 5.10. Forward jumps. a) abort tasks; b) parallel execution

If the tasks are to be skipped, the actual token is transferred to the destination of

the jump. A check must be done to assure that the system does not run into a

deadlock or a live lock. In this situation the jump is consistent if the subnet

starting at the origin of the jump (P1 in the Figure 5.10.a)) and finishing at the

destination (Pn in the Figure 5.10.a)) can be delimited (as defined above in the

backward jump situation). It is assumed that the original net is consistent. (cf.

Appendix B for the proof.)

On the jump in Figure 5.10.b) tasks are executed in parallel. In this situation an

AND-Split is inserted on transition before place P1 (not show in the figure) and a

task Tm must be selected to synchronize the two created parallel threads. The arc

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

152

from Tn to Pn is removed and an AND-Join is inserted on task Tm with arcs from

Pm-1 and from a newly created place Pd. Note that this functionality requires

modifying the model. Like in backward jumps, if the mentioned conditions for

both forward jumps are not met a reachability test must be performed.

Figure 5.10 uses linear execution for simplicity; however the operation is

consistent if the subnets from P1 to Pn-1 and from Pn to Pm-1 can be delimited (as

defined above in the backward jump situation). (This rule is proofed in Appendix

B.)

To implement forward execution of a task (as described in [Reichert et al., 2003])

the responsible person may use ad hoc refinement to execute the task and mark

the task to be skipped (as mentioned bellow). This way, the task is executed as

soon as necessary and skipped whenever reached during standard execution of the

model.

The jump operation moves one mark to a location that is neither in the workflow

history nor in the upcoming tasks. To verify the jump a reachability test must be

performed on the target place, i.e., make a reachability test after moving the mark

from its current location into the target. (The above mentioned characteristics of

reachability tests should be taken into consideration when these tests are

implemented.) If the state is reachable the jump is consistent, otherwise the user is

advised on the test result to decide accordingly. If s/he decides to proceed with the

jump an inconsistency is associated to the instance.

The move operation moves a block in the process to a new location, keeping the

remainder of the model unchanged. A check to model consistency should be done

after the move. Likewise the jump operation, after the test the user decides

whether s/he wants to proceed. After the model is changed the system must also

Solution Architecture and Implementation

 153

verify if the instance can be migrated to this new model and a reachability test is

performed.

With the ad hoc refinement action the person responsible can choose to execute

any activity from a list of standard ad hoc activities defined in the system. The list

of existing ad hoc tasks currently contains a set of common WfMS tasks, such as

making a phone call, sending an email and writing a letter. Users may even

configure a task, based on a general task, that allows the edition of two database

fields, inspecting the evolution of an Internet Web page (e.g., follow up the

evolution of traffic conditions) and list the values from a database table.

Still considering ad hoc refinement, another list is made available with all the

tasks defined in the affected processes. The user may then execute a task that was

not yet executed or repeat the execution of a task already executed. To prevent

unintended duplicate execution of a task executed in advance a marking

mechanism is implemented that forces the task to be skipped when reached under

model execution. The ad hoc refinement is not restricted. From [van der Aalst and

Basten, 2002] a parallel thread can be initiated, executing other tasks and the final

model consistency is not affected. Furthermore, this is a valid transfer rule with no

deadlocks and proper completion.

This action is suitable to insert monitoring actions. When users identify that some

data monitoring is required several times, they may insert the action in the ad hoc

standard activity list.

Ad hoc extensions have a broader scope and a deeper impact on the workflow

instance, since the person responsible can select an alternative path for the

instances or perform small changes to the model. On the alternative path scenario

two situations must be considered: 1) the new model will replace all the threads

being executed on the old model and new model execution starts from the

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

154

beginning with only one active thread; or 2) the transfer is more complicated

because multiple threads are to be transferred to different locations in the new

model. On the former case, if the new path is consistent the transfer will be

consistent as well. On the later case, the user must identify the places to mark in

the new model. A reachability check to new model will have to be performed to

identify if the intended state is reachable. It is assumed that the new model is

consistent.

When small interventions to the model are performed, the user should be advised

to follow the restrictions identified in Section 3.4.2. If the user chooses to apply

changes not predicted, consistency and reachability checks must be performed.

It should be noticed that the move and ad hoc refinement are particular cases of ad

hoc extensions since they both result in executing a new version of the existing

model. However, they are treated separately because they implement recovery

mechanisms that have a different interpretation from the user perspective.

When the handling operation is finished, the system checks for any

inconsistencies associated to the running instances if the user wants to place them

again under model control. Only when all inconsistencies are resolved the system

can be placed on running mode. The system first implements a consistency test to

the resulting model. Model inconsistencies must be removed before any further

action. Then, the system performs a reachability test on the affected instances. If

the marked places are not reachable, the instance is inconsistent. The system

presents the reachable sets that include at least one marked place in the actual

state of the instance. The users may then implement any of the available recovery

actions to remove the inconsistencies.

Solution Architecture and Implementation

 155

5.5 Applications Programmer Interface with the Service

In this section we define the list of functions that compose the Applications

Programmer Interface (API) for the exception handling service. These functions

may be used by other applications to access the service.

Functions were grouped according to the functionality they implement in: 1)

escalation; 2) collaboration; 3) exception description; 4) WF Interventions; and 5)

External info.

Functions in the escalation group:

• AddAffectedUsers(List users)

Affect all users in the list users and return the resulting list of affected

users.

• RemoveAffectedUsers(List users)

Remove all users in the list users from the list of affected users and

return the resulting list of affected users.

• ChangeUserResponsible(String newUser)

Change the responsible to newUser. Return the new responsible if the

change is successful.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

156

Functions in the collaboration group:

• SendEmail(List users, String subj, String content)

Send an email with the specified subj and content to the users whose

username is specified in the list users. Return a list of all users the email

was sent to. A link to the Web page that implements the UI for the current

exception is added to the email content.

• SendMobileMessage(List users, String content)

Verify the mobile number for all users in the list users and sends the a

mobile message with the content. Return a list of all users the message

was sent to.

• SendInstanteMessaging(List users, String content)

Initiate an instant message interaction between the users within the list

users by issuing the message in content. Return the list of users that

are online in the instant message service.

Functions in the exception description group:

• ChangeExceptionInfo(ExceptionInfoType newData)

Update exception related information.

• AddAffectedInstances(List newInstances)

Add instances in the list instances and return the resulting list of

affected instances.

Solution Architecture and Implementation

 157

• RemoveAffectedInstances(List remInstances)

Remove all instances in the list instances from the list of affected

instances and returns the resulting list of affected instances. The instances

for which any recovery action has been implemented can not be removed.

Functions in the WF interventions group:

• SuspendInstance(List instances)

Suspend all instances11 in the list instances if they are affected by the

exception. Return a list with all instances that were suspended.

• Resume(List instances)

Resume all instances in the list instances if they have been suspended.

Return a list with all instances that were resumed.

• AbortInstances(List instances)

Abort all instances in the list instances if they are affected by the

exception. Return a list with all the aborted instances.

• BwdJumpInv(List instances, StateType newState)

Verify if the state newState is a state in the history of all instances in the

list. Every instance must be based on the same model and be at the same

state.

11 In all functions of this group, the instances must be affected to the exception.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

158

• BwdJumpCons(List instances, StateType newState)

Verify if the backward jump to state newState is consistent for the

instances in the list instances. Returns true if the jump is consistent

and no otherwise. Every instance must be based on the same model and be

at the same state.

• BackwardJump(List instances, StateType newState)

Jump backward to the state newState that must be in the history of every

instance. Every instance must be based on the same model and be at the

same state.

• FwdJumpInv(List instances, StateType newState)

Verify if the state newState may be a future state for all instances in the

list. Every instance must be based on the same model and be at the same

state.

• FwdJumpCons(List instances, StateType newState)

Verify if the forward jump to state newState is consistent for the

instances in the list instances. Returns true if the jump is consistent

and no otherwise. Every instance must be based on the same model and be

at the same state.

• ForwardJump(List instances, StateType newState,

Boolean paralExe)

Jump forward to the state newState that must be reachable from the

current instances state. Variable paralExe indicates if the tasks in the

Solution Architecture and Implementation

 159

middle are executed in parallel (true) or skipped (false). Every instance

must be based on the same model and be at the same state.

• JumpCons(List instances, StateType newState)

Verify if the jump to state newState is consistent for the instances in the

list instances. Returns true if the jump is consistent and no otherwise.

Every instance must be based on the same model and be at the same state.

• Jump(List instances, StateType newState)

Jump to the state newState in the workflow model. Every instance must

be based on the same model and be at the same state.

• ChangeInstanceModel(List instances, String

newModel, list newStates)

Jump to the state newStates in the workflow model. Every instance must

be based on the same model and be at the same state. There may be more

than one active thread in the new model may be more than one.

• VerifyReach(List instances, String model,

StateType newState)

Verify if the state newState is a reachable state from the current state of

the instances in the list. Every instance must be based on the same model

and be at the same state.

• VerifyReachFromStart(String model, StateType

newState)

Verify if the state newState is a reachable state in model.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

160

• StartParThread(List instances, String model)

Start a new parallel thread with model for every instance in the list.

• ListAdhocTasks()

List the ad hoc predefined tasks.

• ListInstanceTasks(List instances)

List the tasks defined in the model for these instances. Every instance must

be based on the same model and be at the same state.

• ExecuteParTask(List instances, Task task)

Start a parallel thread to execute task. Every instance must be based on the

same model.

• ExecuteParTaskInModel(List instances, Task task,

Boolean repeat)

Start a parallel thread to execute task that belongs to the list of tasks

available in the workflow model. If the task is later reached during standard

execution, it is skipped if the parameter repeat is false and executed

again otherwise. Every instance must be based on the same model.

Functions in the External info group:

• InsertExternalInfo(String info)

Insert the string info into the external related information.

Solution Architecture and Implementation

 161

5.6 Implementation in the OpenSymphony platform

In this section we describe the solution implementation. In the following, we start

with some relevant details about the system platform. Then, we identify the

exception handling components integrated with the system platform. To finish this

section, we present the implemented data model and illustrate the system use.

5.6.1. The OSWorkflow project

The OSWorkflow (OSWF) is a project within the OS [The OpenSymphony

project, 2005] open source suite of components that implements a workflow

engine. Other projects in the suite implement user validation to passwords and

roles, a timer component, persistence store of workflow application data and Web

interfaces. All the components are developed in Java and run over a servlet

container. Workflow models are stored in Extended Markup Language (XML)

files.

The OSWF project stores the workflow control data in a Relational Database

Management System (RDBMS). Figure 5.11 represents the complete set of tables

and their relationships in the referential model.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

162

OS_WFENTRY

PK ID

NAME
STATE

OS_CURRENTSTEP

PK ID

FK1 ENTRY_ID
STEP_ID
ACTION_ID
OWNER
START_DATE
FINISH_DATE
DUE_DATE
STATUS
CALLER

OS_HISTORYSTEP

PK ID

FK1 ENTRY_ID
STEP_ID
ACTION_ID
OWNER
START_DATE
FINISH_DATE
DUE_DATE
STATUS
CALLER

OS_HISTORYSTEP_PREV

PK,FK1 ID
PK,FK2 PREVIOUS_ID

OS_CURRENTSTEP_PREV

PK,FK1 ID
PK,FK2 PREVIOUS_ID

Figure 5.11. OSWorkflow referential model

An example is used to illustrate the execution and control of workflow instances

by the engine. The table fields will also be described within the example. It is

assumed that the file named “example.xml” contains the workflow model. Note

that in the OSWF nomenclature workflow states as steps. As it will be explained

bellow, there is not a direct correspondence in OSWF nomenclature to the concept

of workflow tasks. Remember that in our adopted Petri Net modelling formalism,

a workflow task includes task execution and state transition.

The main table, OS_WFEntry is shown in Figure 5.12 after the workflow instance

has been initialized. The ID field is the key for the workflow instance, the NAME

is the file with the model and STATE indicates whether this instance is activated,

suspended, completed or killed.

ID NAME STATE

…

32 example.xml Activated

…

Figure 5.12. OS_WFEntry table after the example initialization

Solution Architecture and Implementation

 163

When a new instance is created, the engine inserts a new row in the table with a

generated ID field and the file name chosen by the caller. After successfully

execution of the initialization routine, the field STATE is set to Activated. An

example with the sequence of methods to create a workflow instance is shown in

Code listing 5.1.

 Workflow wf = new BasicWorkflow(username);

 long id = wf.initialize("example", initAction, mapInputs);

Code listing 5.1. Create a workflow instance

The first method initializes the object and sets an internal variable with the name

of the user logged on the system. The second method creates and initializes the

new workflow instance. The first parameter is the name of the XML file with the

model, the initAction variable indicates the number of the action to be

executed and mapInputs is a set of key to value pairs used by the action. These

methods belong to the OSWF API that defines the interface used by programs to

access OSWF functions.

The XML model file can now be described to explain how the actions are

executed by the workflow engine. The model element in Figure 5.13 represents

the initial state for a generic workflow and is named “initial actions”. The figure

shows the available initialisation actions numbered from 1 to n. Action 1 is

presented in detail to allow the description of one action execution presented

bellow. The action structure is the same for every workflow step and therefore this

description is applicable.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

164

initial actions

action id =“1” name=“Action name 1”

restrict-to

pre-functions

results

post-fucntions

action id =“n” name=“Action name n”

.

.

.

Figure 5.13. Hierarchical organization of initial actions in a OSWF model

As mentioned before, a workflow state is named a step in OSWF. Figure 5.14

shows the hierarchical organization of the steps. Every step has an initial

collection of external permissions that enables the definition of a set of conditions

to control task execution. The conditions may also depend on workflow relevant

data and workflow control data. Since the model allows multiple permissions

more than one task can be active at the same moment. This construction may be

used to control who has access to the task or what is the task to execute in the step

according to workflow control data and workflow relevant data. It is also

important to note that task execution can proceed as soon as the workflow is at the

step, if any of the external-permissions elements evaluate to true. Even further, for

as long as the workflow instance remains at the step, users can still execute the

task. When the task finishes, an action must be executed to trigger step transition.

This distinction between workflow task in the Petri Net modelling formalism and

action in OSWF nomenclature should be emphasized. The execution of one task

in OSWF does not trigger workflow step evolution. An action must always be

executed when the task finishes changing the actual step number for the instance.

Solution Architecture and Implementation

 165

Therefore, the workflow Petri Net task (the transition) is said to be spread through

the step and the action.

Steps

Step id =“n” name=“Step name 2”

.

.

.

Step id =“1” name=“Step name 1”

external-permissions

actions

Permission name=“Perm 1

Permission name=“Perm 1

Figure 5.14. Hierarchical organization of steps in a OSWF model

Coming back to the initialization sequence, to execute action ID 1 (to avoid

confusion this action will be referred as action 1) in the instantiation process, the

variable initAction must be equal to 1 in the wf.initialize method of

Code listing 5.1. The details for action ID 1 are also represented in the example

model of Figure 5.13. Each action in an OSWF model can contain four distinct

elements: restrict-to, pre-functions, results and post-functions.

The restrict-to element is composed by a series of conditions that must be evalu-

ated to true to allow the execution of the action, e.g., only users that belong to a

given role can execute the action. The following element is the pre-functions.

These functions execute code before the state transition takes place. They are

typically used to evaluate conditions to be used on OR-Splits or to return

workflow relevant data that is to be stored in the OSWF tables.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

166

The next element is named results and is used to control the transition, i.e., the

next step for the workflow instance. Each element results can have zero or more

conditional results elements but must have at least one unconditional result

element [The OpenSymphony project, 2005]. This structure can be compared to a

“case” statement in a typical programming language where the element “case

else” is mandatory. The first conditional element that is evaluated to true is

executed. If none of the conditional elements is true the unconditional element is

executed.

An example is used to clarify how the attributes in the result element are used by

the transition. Assume that there are no conditional results and the unconditional

result in action 1 is the Code listing 5.2. The unconditional result indicates to the

engine the number of the next step in the attribute step. The remaining attributes

will be explained bellow during the description of the table that stores workflow

control data. Therefore, after the element is executed by the engine the workflow

instance is in step ID 1 (step 1 from now on).
<unconditional-result old-status="Finished" status="Run"

 step="1" owner="$(caller)"/>

Code listing 5.2. Unconditional result for action ID 1

Conditional result elements are similar to unconditional in the sense that they have

the same information for step transition. They only have one condition at the

beginning that is evaluated to verify if they are executed. It has been explained

above that the results element included in the step can have several conditional

results but must have at least one unconditional result. Therefore transition in the

step state is always assured if an action is executed. On the other hand, this form

of conditional and unconditional results correspond to an OR-Split, i.e., various

conditional results being tested and only one defining the next step means that the

direction of the flow is chosen by the executed element. The AND-Split has a

slightly more difficult definition and is explained at the end of this section. At this

Solution Architecture and Implementation

 167

moment, it is important to realise that when an AND-Split is executed the table

OS_CURRENTSTEP will have two entries for the instance (one row for each

parallel thread).

Finally, the last element in the action is the post-functions that are executed after

the transition takes place (e.g., send an email to a user indicating that the action in

the new step of the workflow instance is available to be performed.) Figure 5.15 is

the execution flow of the elements defined in the model for one action and

summarizes the above description.

Wait for
action trigger

Test restrict-to
element

false
true

Execute
pre-functions

Results: find
next step

Execute
post-functions

Figure 5.15. State transition of the OSWF engine

The information stored by the engine in the database will now be explained. The

current steps of the various workflow instances running on the system (workflow

control data) are stored by the OS_CURRENTSTEP table. Figure 5.16 lists the

table field values after the successful initialization of the example using action 1.

The ID field is the key for this table and is automatically generated. The

ENTRY_ID field is the foreign key to reference the workflow entry table (the

OS_WFEntry described above). The fields STEP_ID, OWNER and STATUS

reflect the attributes specified in the unconditional result element. As mentioned

before, the state assumed by the workflow instance after the transition takes place

is specified by the attribute step (1 in Code listing 5.2) and stored in the field

STEP_ID. The OWNER field is specified in the attribute owner and, assuming

the username that triggered the initialization process was “João”, is the value in

Figure 5.16. Finally, the attribute status specifies the field STATUS of the

table and can assume any value. Fields OWNER and STATUS may be used in the

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

168

external permissions element of the step (explained above) to control who can

execute the defined tasks. Remember that more than one task may be defined and

these fields may be used in conditions to specify what actions are available to

what users.

ID ENTRY

_ID
STEP
_ID

ACTION
_ID

OWNER START_
DATE

FINISH
_DATE

DUE
_DATE

STATUS CALLER

.

5 32 1 João 4/4/2004
11:50:33

 Run

.

Figure 5.16. OS_CURRENTSTEP table after the example initialization

The fields ACTION_ID, FINISH_DATE and CALLER are set to null because

they will be used when the next action, executed on step 1, is executed. The

DUE_DATE field can be used to set the desired due date for this task. To set a

value for DUE_DATE the optional attribute due-date must be used in the

unconditional result element in Code listing 5.2.

After the transition takes place and the post-functions are executed the instance

becomes idle until another action is performed over it. In the example, the

workflow is on step 1 waiting for any user-triggered action or any automatic

action (the OSWF project has a special type of actions, called automatic actions,

which are automatically fired when the engine reaches the step where they are

defined).

Assume now, that action ID 3 (defined in step 1 of example.xml) is later executed

by username “João” on 6/4/2004 15:30:45. The row in Figure 5.16 is copied to the

OS_HISTORYSTEP table and a new row is inserted in OS_CURRENTSTEP

table reflecting the results of action 3. Figure 5.17 lists the table

OS_HISTORYSTEP. The figure shows the fields ACTION_ID, FINISH_DATE

Solution Architecture and Implementation

 169

and CALLER with the values already settled and defined by the execution of

action 3.

ID ENTRY

_ID
STEP
_ID

ACTION
_ID

OWNER START_
DATE

FINISH
_DATE

DUE
_DATE

STATUS CALLER

.

5 32 1 3 João 4/4/2004
11:50:33

6/4/2004
15:30:45

 Run Joao

.

Figure 5.17. OS_HISTORYSTEP table after execution of action 2

To carry on the execution of the workflow, the engine has methods that return the

actions that the logged user can perform on the workflow. These methods use the

workflow ID to retrieve the model filename from the OS_WFEntry table and the

actual step ID from OS_CURRENTSTEP table. Then, from the defined actions

are retrieved from the XML model.

The last OS_CURRENTSTEP_PREV and OS_HISTORYSTEP_PREV tables

identify the action executed before the current step and link the history of the

tasks executed in the workflow respectively.

From the above description it is important to highlight there is equivalence

between the Petri Nets modelling and the OSWF. The marked Petri Net places

correspond to steps in the OSWF. However, in Petri Nets task execution is

modelled by the transition whereas in OSWF task execution proceeds while the

instance is at the step. Actions in OSWF are used to control the state transition

between steps and not task execution. Therefore the Petri Net transition concept is

spread through the step and the action. This fact introduces some minor

adjustments when the developed models are written using the OSWF

meta-language. Nevertheless, the equivalence between places and steps simplifies

the overall implementation of the models.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

170

Finally, as mentioned before, the AND-Split has a particular structure in the

OSWF project and should be described. Code listing 5.3 is an example of an

AND-Split defined for one example action. The unconditional result element in

the action refers to the element split ID=1. In the split element, each unconditional

result row element refers to one parallel thread that is to be generated and the

attributes specify the associated information. In the example, two parallel threads

are generated for steps ID=30 and ID=40.
<steps>

 <step id=”10” name=”Step Example”>

 <action id=”10” name=”Action example”>

 . . .

 <results>

 <unconditional-result old-status="Finished" split="1"/>

 </results>

 </action>

 </step>

</steps>

<splits>

 <split id="1">

 <unconditional-result old-status="Finished" status="Underway"

 owner="$(caller)" step="30"/>

 <unconditional-result old-status="Finished" status="Finished"

 owner="$(responsible)" step="40"/>

 </split>

</splits>

Code listing 5.3. Example of an AND-Split in the OSWF project

The AND-Join has an equivalent structure since multiple threads where multiple

steps are active must join into one step. It is equivalent in the sense that every step

that is to be joined must have an action that refers to a Join element defined in a

corresponding element. Code listing 5.4 is an example joining steps ID=35 and ID

=45. To avoid duplication only step ID=35 is shown. The join element at the end

shows a condition where each parallel thread to be joined is tested to their status.

Solution Architecture and Implementation

 171

If one of them is not in the required step ID or the status attribute is not set to

finish the join does not execute. On the contrary, if both the threads in the

example are in step ID=35 and ID=45 and their status is finished the join is

executed merging all the threads into a single one with the step ID=60 active

(unconditional result element at the end of the join).
<steps>

 <step id=”20” name=”Step Example2”>
 <action id=”100” name=”Action example2”>
 . . .
 <results>
 <unconditional-result old-status="Finished" join="1"/>
 </results>
 </action>
 </step>

</steps>
<joins>
 <join id="1">
 <conditions type="AND">
 <condition type="beanshell">
 <arg name="script"><![CDATA[
 "Finished".equals(jn.getStep(35).getStatus()) &&
 "Finished".equals(jn.getStep(45).getStatus())
]]></arg>
 </condition>
 </conditions>
 <unconditional-result old-status="Finished" status="Underway
 " step="60"/>
 </join>
</joins>

Code listing 5.4. Example of an AND-Join in the OSWF project

5.6.2. Exception detection and signalling in the OSWF project

In this section we describe the implementation in the OSWF project of the

mechanisms listed in Section 5.3 to detect exceptions. Once the exception is

detected, the exception handling workflow (cf. Section 0) is instantiated. The

instantiation process uses the OSWF API as described in the previous section. The

mechanisms to automatically detect the workflow, data, temporal and

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

172

system/application exceptions are described. Exception related information is

stored on a database described in Section 5.8.

As discussed in Section 5.3, pre-conditions and post-conditions are used to detect

workflow events. Pre-conditions are implemented using the external-permissions

element of the step. The inserted condition may also be used to instantiate the

exception handling workflow. Post-conditions are mapped to conditional results

elements. When the detection does not restrict workflow evolution, it is enough to

insert a pre-function or a post-function to instantiate the exception handling

workflow. Since pre-functions run before state transition they will be preferred.

From now on, and to avoid confusion, the adopted detection mechanism is based

on pre-functions. In Section 5.3 four workflow event types were identified:

start/end of an instance; and start/end of a task. The start of an instance is detected

by a pre-condition on the first task of the model. Therefore, in OSWF the initial

actions element (refer Section 5.6.1) is used to detect the event and the workflow

initialisation actions are transferred to a newly inserted step. The end of an

instance uses a pre-function in the last task of the model. For the task start a new

step must be inserted before, while for the task end situation a pre-function is

inserted on the monitored task.

Exception related information (cf. Section 5.3) is initialised by the function used

to detect the event. Since it is a dedicated function designed to detect the

particular event, it embeds the appropriate describing information and the reaction

time value. The remaining information is obtained by the function within the

workflow engine, namely the affected instance, the step number and the

responsible user. In all mentioned situations, after the exception handling

workflow is instantiated, the affected instance state can be changed to idle on the

same function that detected the event. Again, this information is embed in the

function and may also depend on application data, workflow relevant data or

Solution Architecture and Implementation

 173

workflow control data. Even further, since some tasks do not depend on the

engine, the owner can be informed by a communication mechanism (either email

or mobile message depending on the event). This functionality refers to all

detection mechanisms described bellow.

Data events are implemented using the pre-function element of the action. Every

data structure is stored in a database and managed in local memory using a

dedicated class. Classes that support data structures implement a special method

named validateData that evaluates data consistency according to a predefined set

of rules. The tasks that manipulate data structures must evoke a special

pre-function indicating the object to be checked as a parameter. The pre-function

runs the objects method and instantiates the exception handling workflow on the

presence of any data inconsistency. The object returned by the validateData

method describes the reason for the exception and indicates if the instance is to be

suspended. The description and the step number are stored in the exception

describing information and the user that executed the task is defined as

responsible. If the violated constraint results from a cross-instance check (cf.

Section 5.3) all affected instance(s) that violate(s) the constraint are also identified

in the object returned by the validateData method. This affected instance(s) are

also suspended if indicated by the object.

All temporal events are supported by the Quartz project provided by the OS suite

that implements a time triggering mechanism. The triggering mechanisms for the

temporal events must be inserted in the workflow model where the exception is to

be detected. Code listing 5.5 is an example for the periodical class detection

represented in Figure 5.7. The easy mappings between places in Petri Nets and

steps for one side and between tasks and actions for the other are illustrated by the

example. In the initial actions element the timer is started and a split generates

two parallel threads: one for the main workflow and another for the identification

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

174

mechanism. Step ID=1000 models the place P1 where two actions are

implemented. The first action refers to the timer time-out and is invoked by the

timer while the second is an AND-Join where the two parallel threads of Figure

5.7 are joined to terminate the workflow. The next step after the join is used to

terminate the instance. The pre-function executed inside the timer time-out action

instantiates the exception handling workflow. The other periodical classes have

similar implementation.
<initial-actions>

 <action id="1" name="Action to initialize business process">

 <pre-functions>

 <function type="class">

 <arg name="class.name">com.hrm.util.InitialiseTimer</arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished" split="1"/>

 </results>

 </action>

</initial-actions>

<steps>

 <step id=”1000” name=”Place P1”>

 <action id="10000" name="Timer time out">

 <pre-functions>

 <function type="class">

 <arg name="class.name">

 com.hrm.util.InstantiateException

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

 status="Finished" step="1000" owner="$(caller)"/>

 </results>

 </action>

Solution Architecture and Implementation

 175

 <action id="10010" name="WF finished">

 <results>

 <unconditional-result old-status="Finished" join="1"/>

 </results>

 </action>

 </step>

</steps>

<splits>

 <split id="1">

 <unconditional-result old-status="Finished" status="Underway"

 owner="$(caller)" step="Task1"/>

 <unconditional-result old-status="Finished" status="Finished"

 owner="$(responsible)" step="1000"/>

 </split>

</splits>

<joins>

 <join id="1">

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script"><![CDATA[

 "Finished".equals(jn.getStep(Taskn).getStatus()) &&

 "Finished".equals(jn.getStep(10000).getStatus())

]]></arg>

 </condition>

 </conditions>

 <unconditional-result old-status="Finished" status="Finished

 "step="Terminate"/>

 </join>

</joins>

Code listing 5.5. Detection mechanism for the periodical temporal event

Exception information is initialised in the InstantiateException function that is

executed when the timer fires and step named Place P1 is active. Like in the

previous scenarios, the information identified in Section 5.3 is associated to the

new exception.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

176

System and application events are identified using the catch mechanism of the

Java programming languages. If during code execution a non-caught exception

construct from the program is raised, the code instantiates the exception recovery

workflow. If the error is originated on the underlying systems supporting the

workflow engine a system exception is raised, and if it is originated on the

applications that implement the tasks an application exception is generated.

Again, exception related information is initialised according to Section 5.3.

Finally, non-compliance and external events are manually triggered by a

command available at the UI used to manage the workflow instances or, whenever

possible, inside the UI tasks. When the command is issued, the exception handling

workflow is instantiated with the running instance affected to the exception and

the operator that signalled the event as responsible. The reaction time is initialised

as relaxed since the user will be prompted to specify all exception related

information using a dedicated UI as mentioned in Section 5.3.

5.6.3. Exception handling in the OSWF project

To implement the exception handling workflow of Figure 5.4, a model was

developed in a XML file. The model is listed in Appendix E. The UIs allowing

users to escalate an exception, to affect instances and to edit the description were

built using Java Server Pages (JSP) programming to run over a Web environment.

Their execution will be explained in Section 5.7 during the discussion of one user

interaction example. In this section we will explain how the solution implements

the recovery actions listed in Section 5.4. Since the consistency check is not yet

implemented in OSWF, some stronger restrictions were made to inform the user

on the consistency of the intervention.

Solution Architecture and Implementation

 177

The changes in the workflow models of the OSWF project are accomplished by

editing the XML model files. A special method was developed to change a

workflow model used by a particular workflow instance. This method will be used

on various operations and changes the field NAME in the OS_WFENTRY table

(cf. Section 5.6.1). A log entry is also generated for this operation. The description

of the versioning system used to manage the models used by the instances is out

of the scope of this work.

For the action suspend/reinitialize instances, the field STATE of the workflow

OS_WFENTRY table is used. The suspended value on this field indicates that

the workflow instance cannot start any activity. If a task started before the

instance changes to the suspended state, a step transition can take place. The

system should send messages to the person(s) executing manual tasks and to the

supervisors of the automatic ones. The same process is adopted for the abort

instance action but in this case, the field STATE is change to killed.

To implement forward and backward jumps, a new action is inserted in every step

that uses as a parameter the number of the destination step. To identify whether it

is backward jump or a forward jump the OS_HISTORYSTEP table is verified. If

the destination step is in the table for this instance it is a backward jump otherwise

the presence of a forward jump must be investigated.

To verify the consistency of a backward jump, the subnet as defined in Section 5.4

is identified. As this version of OSWF does not verify models consistency,

backward jumps will be restricted to steps where the subnet only implements the

sequence pattern as defined in [van der Aalst et al., 2002]. Later versions may

implement the functionality as described in Section 5.4.

To investigate the presence of a forward jump, a simple algorithm is used to

generate a tree of reachable steps from the current position. Once the destination

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

178

step is found a forward jump presence is detected. Any loop is iterated only once.

For complex models a depth limit can be defined. If the step is reachable the

forward jump consistency is determined by a process similar to backward jumps.

If the step is not reachable, the user is informed that this is a jump operation.

Again, as in backward jumps only jumps in sequence patterns will be consistent.

If the user wants to implement a forward jump with parallel execution of the tasks

between the actual step and the destination the model must be changed. An

AND-Split is inserted on the actual step and a task must be selected to

synchronize the two parallel threads. An AND-Join is inserted on the task.

The jump operation requires a reachability test as mentioned in Section 5.4. The

new step numbers are tested as in the forward jump above to investigate

reachability. The jump is consistent if and only if the steps are reachable. Notice

that in the jump operation, the instance may have more than one thread active. A

new step number must be issued for every thread and the reachability study is

made for all steps. The system is currently limited to change the value for two

threads to bind the complexity of the generated tree of reachable states.

The move operation requires the edition of the model file by a workflow modeller

to change the position of the task or block of tasks. Again, as the check for the

consistency property is not yet implemented, this version will only allow moving

blocks that implement the sequence pattern and that are moved within the limits

of the same thread. The thread containing the moved block may only implement

the sequence pattern.

For the ad hoc refinement tool, the list of the standard actions is defined in a

dedicated XML file. Some minor adjustments had to be made to the OSWF

project to assure the execution of these actions within the scope of the instance.

The growth of this general purpose model is assured by a system designer that

evaluates the activities executed by the users in every exception handling

Solution Architecture and Implementation

 179

procedure and identifies the actions that should be included. For the actions

defined in the model of the running instance no special code was developed. The

actions are listed to the user that can select the desired one. All inserted tasks are

executed on a new thread and join at the end of the model. Every model has a

dummy join at the end inserted to join all these threads. This implementation

simplifies the execution of these tasks.

In the alternative path of the ad hoc extension the user chooses another workflow

model from a list with a predefined new trajectory for the remaining steps. As

described in Section 5.4, two situations are considered: 1) the new model starts

from the beginning with only one instance; and 2) all threads are transferred to a

particular step in the new model. In the former case, since we assume the new

model is consistent, the operation is consistent. In later case, the user indicates the

step numbers for all threads in the new model and a reachability test is performed.

According to the limits imposed on the reachability test mentioned above, it is not

possible to transfer instances with more than two threads active. If the user still

wants to transfer the instance, the system will assume inconsistency.

When small changes are applied to the model according to the transformation

rules described in Section 3.4.2, consistency is assured and no further action is

required. If the user does not comply with the mentioned transformations the

operation is marked as inconsistent. When the user wants to apply a new model

and the model is not available, s/he contacts the workflow modeller to develop a

new one.

To support users resolving inserted inconsistencies, the limit to the consistency

check described above must be taken into consideration. Nevertheless, users may

verify inconsistencies with system support and resolve them using unstructured

activities support. Visual tools displaying the model and active threads may be

helpful to fulfil this task.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

180

5.7 User interaction with the service

The exception handling workflow is instantiated according to the method

described in Section 5.6.2 and may result from automatic or manual detection. In

both cases one person is always associated to the exception and involved in the

handling process. That person is either the one that manually detected the

exception or someone involved in the workflow task that automatically generated

an exception. Both will be naturally interacting with the system using available

UI.

From the users’ point of view, the handling process is managed through a Web

page, which we designate Exception Handling Workflow (EHW). Figure 5.18 and

5.20 show the EHW user interface at two different states of the exception

handling workflow model. To simplify the matching between the workflow model

and the figures for the EHW user interface, the correspondence between

workflow, Petri Net and OSWF terminologies is repeated. A workflow state is

represented in Petri Nets by a place and corresponds to a step in OS. A workflow

task is represented in Petri Nets by a transition and is spread through an action

and the tasks available at the step. The OS action must be included because a

workflow task is associated to state transition. (cf., Section 5.6.1., a step transition

results from executing an OS action.) On the other hand, since the execution of

task related activities is also included in the workflow task, the OS step where the

activities are defined is also included.

The EHW page reports the current workflow state and manages the exception

handling workflow. Figure 5.18 shows the step corresponding to place P1 in

Figure 5.4. In this step, only the task Edit exception info is active. If the Edit

exception info task is executed, the exception information can be edited but no

workflow transition will take place. To trigger state transition, the action named

Solution Architecture and Implementation

 181

Start handling must be executed. The user may then execute the task as many

times as desired.

Figure 5.18. Exception handling workflow page (EHW)

In Figure 5.19 we show the details of the Edit exception info task, where the user

defines the mandatory and optional diagnosis values discussed in Section 4.5.

That person may also define a new responsible and a list of affected users and

workflow instances. All affected users, including the person responsible, will be

notified by the collaboration support component on the step transition. Users are

notified using the API. The values in all task figures belong to an example that

will be described in Section 6.1. They are only used here to exemplify the UI

usage.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

182

Figure 5.19. Editing the exception information

Considering again the EHW page, the Start handling action initiates the five

parallel branches of the exception workflow model. Consequently, the EHW page

will look like Figure 5.20. Observe that five steps are now available

(corresponding to places P2 through P6 in Figure 5.4), allowing to collaborate with

other persons involved, modify the exception description, execute recovery

actions, execute monitoring actions or manage external information.

Solution Architecture and Implementation

 183

Figure 5.20. EHW page handling the 5 parallel branches of the exception handling workflow

The Collaboration support step offers one task and two actions. The collaborate

task can be synchronous or asynchronous and is implemented using a developed

API. When asynchronous collaboration is selected, the system supports sending

email messages between the persons handling the exceptional event. The

generated email messages mixes information provided by the sender with

information automatically generated by the collaboration component, which

includes at least a link to the EHW page. Concerning the synchronous

collaboration, the collaboration component supports instant messaging between

the persons handling the exceptional event and interfaces with the exception

history component to preserve the exchanged messages in context.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

184

The Define new responsible action allows modifying the person responsible for

the exception handling. This action is implemented by the Web page displayed in

Figure 5.21, where the user may choose a new responsible by selecting a person

from a combo box displaying the list of all persons that exist in the organization.

Figure 5.21. Choose a new responsible

The Change affected users action enables the selection of affected users, as shown

by the Web page displayed in Figure 5.22. Note that the person responsible is not

displayed because s/he is always affected by the exception handling process.

Figure 5.22. Change affected users

Concerning the Edit exception classification action in step Exception description,

the Web page utilized to edit the exception classification is similar to the Edit

exception info page shown in Figure 5.19 and is not shown. One additional

functionality is that the user may share alert messages with attached files with the

Solution Architecture and Implementation

 185

other persons involved. These alert messages may be classified as critical

(displayed in red) or important (displayed in blue). Figure 5.23 illustrates how the

alert messages are displayed in the EHW page. If none of these classifications is

selected the message is only displayed inside the component. The Web page

shown in Figure 5.24 enables changing the workflow affected instances.

 Figure 5.23. EHW displaying alert messages at the top

Figure 5.24. Changing the affected instances

Concerning the Recovery actions step, the user must first select, among the

affected instances, which ones to apply a recovery action. Then, one recovery

action may be selected from the list discussed in Section 5.4. The implementation

of these recovery actions requires low-level interventions in the OSWorkflow that

will not be described in detail here.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

186

Regarding “Monitoring actions,” this step allows users storing relevant external

information in the exception history. The user may select among the following

information types: application data; workflow relevant data; workflow control

data; links to Web resources; and text provided by users. Application data,

workflow relevant data, and workflow control data follow the terminology

defined by the WFMC [WfMC, 1999].

If application data resides on an accessible database, a reference can be inserted in

the OSWorkflow configuration file to allow accessing the database. The

monitoring action Web page then accesses the database metadata and displays the

available tables and fields, so that the user may associate the monitoring action

with a database field. In the Code listing 5.6, a XML component is used to

provide the parameters to connect to a SQL Server. Another element not shown is

then used to make all these parameters available to the application’s context.

<ResourceParams name="application-database">

 <parameter>

 <name>url</name>

 <value>

 jdbc:microsoft:sqlserver://comp:1433;Databasename=db

 </value>

 </parameter>

 <parameter>

 <name>driverClassName</name>

 <value>com.microsoft.jdbc.sqlserver.SQLServerDriver

 </value>

 </parameter>

</ResourceParams>

Code listing 5.6 XML component to link to application data

Figure 5.24 shows the Web page allowing users selecting a field from the

tPayments table. The values obtained this way are always saved in the history

component in textual format no matter their original type.

Solution Architecture and Implementation

 187

Figure 5.25. Selecting the table and field for a monitoring action

Finally, the “External info” step affords recording into the exception history any

external information provided by users. Figure 5.26 displays the Web page

recording information related with a decision. Note there is a field indicating if the

decision is still valid.

Figure 5.26. Inserting external decision-making information

5.8 Exception data model

The information associated to every exception is represented in the data model of

Figure 5.27. This model is highly integrated with the OSWorkflow data model to

enable cross referencing. If the system is intended to be universal, an Application

Programmer Interface specifying the primitives for data interchange, could be

defined. As mentioned in Section 5.6.1, the OS_WFENTRY table stores all

instances executed or being executed by the workflow engine. The table

tExceptions stores the classification values for all dimensions identified in

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

188

Section 4.5 Table tExcAffectedWFs has the key identifiers of the

OS_WFENTRY table and identifies the affected instances, while

tExcAffectedUsers has the user names of the persons affected by the

exception.

Table tExceptions stores old values for logging purposes. Every save

operation on this table creates a new row with a reference to the old values. Child

tables with the affected instances and users are duplicated and associated to the

new rows.

Figure 5.27. Exception referential model

Table tExceptionsMonitoringInfo stores data related with external

monitoring information, e.g., if it concerns application data, workflow data or a

link to an external site. The child table tExceptionsMonitoringInfo

contains the data values. External decision-making information notified through

interface E is stored in tables tExceptionsDecisionMaking and

tExceptionsDecisionMakingInvolvedUsers. Recovery actions are

Solution Architecture and Implementation

 189

kept by tables tExceptionsRecoveryActions and

tExceptionsRecoveryActionsInstances. Finally, external information

is stored in the tExceptionsInfoGathering.

The actual exception data model does not store all the exception related

information identified in Section 4.5. In particular, the present version does not

store affected tasks, data structures, data timers, model deviations, root cause and

impact. This information has been identified as relevant for situation diagnosis but

not critical for current implementations and therefore not yet implemented.

5.9 Summary

This chapter describes the solution architecture and implementation. We started

by introducing our solution’s architecture to implement the exception handling

service. The architecture is based on our extended reference model and is

composed by four components: Exception Description, WF Interventions,

Collaboration Support and Exception History. The solution’s interfaces with the

WfMS and with the environment were also described.

A dedicated workflow implements the solution’s components. Whenever an

exception is detected, the exception handling workflow is instantiated. The

workflow reflects the exception handling service procedure presented in the state

diagram of Figure 4.1. On the other hand, the support to the basic problem

functions identified in Section 4.3 is also assured. In particular, the intertwined

play between diagnosis and recovery.

The mechanisms to automatically detect the exception types workflow, data,

temporal and system/application are also described. In the case of manual

exception detection, users instantiate the exception handling workflow.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

190

A set of quasi-atomic recovery actions is described. These actions allow users to

carry out the recovery procedures to bring the system back into a coherent state.

The impact of the actions on instances’ consistency is also discussed.

Nevertheless, users are not restricted to implement the actions even if

inconsistencies are inserted. They are advised and, if they decide to proceed with

the action, the instance is marked as inconsistent.

Our solution is implemented using the OS open source project suite of

components. The suite was explained to enable the description of the

implementation of the solution’s components by the dedicated workflow. Using

example screens, the user interaction with the service was also described. Finally,

the chapter finishes with the presentation of the exception data model that stores

all the exception related information.

Chapter 6

Evaluation

As mentioned throughout this document, our proposed system has the objective to

effectively support users on their reaction to unexpected exceptions. The effort

placed on the system implementation reflects our concern with feasibility

evaluation. We should consider, however, the concept developed in this thesis to

deal with unexpected exceptions should also be verified in organizational

scenarios. We have also placed some effort on this subject even though we

recognize deeper research on the subject is still required.

Therefore, to validate our approach we have identified four relevant aspects:

1. Visioning – the approach used in our solution should be conceptually

evaluated;

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

192

2. Feasibility evaluation – implement the solution;

3. Field tests – use the solution in case studies to verify its impact;

4. Usage – verify if the solution is adopted by organizations.

We have used the 9/11 example throughout this thesis as conceptually inspiring

our solution. The example is further discussed in Section 6.1.

The solution implementation is described in this thesis. The developed code will

be made available for the open source community and its usage will be followed

up. Some work will also be carried out to integrate the solution with the OS

framework to facilitate its acceptance.

We have been able to test our solution in a concrete situation: a Port Authority.

During system tests, we were able to follow an exception since it was detected

until it got solved. In Section 6.2. we discuss this event.

In Section 6.3 we discuss the usage of our exceptions characterization by a

Brazilian company. Finally, our publications have also been referenced by various

authors indicating that this area of research is still a hot topic. In Appendix D we

list the publications that cited our work.

6.1 The 9/11 conceptually inspiring event

This case has been introduced and discussed throughout this dissertation. In this

section we discuss how this thesis solution could have been used to support air

traffic controllers during the 9/11 event. In order to be effective, we believe that

the unexpected exception handling service should be integrated in the work space

of the air traffic controllers. Therefore, we have connected our architecture with

the WfMS and with the environment. On the other hand, the solution should also

Evaluation

 193

be integrated into the work environment so users interact with it in the sane way

as they interact with the systems they usually work with. We will assume that

such a system exists and is widely used by all air traffic controllers within the

USA. We will now discuss how our solution could have been used.

As soon as the Boston air traffic controller looses the transponder signal from the

screen, he signals an expected exception. He assumes that this is due to some

temporary malfunctioning equipment. When he hears the voices in the cockpit

saying “we’ve got some planes” he instantiates a new unexpected exception

involving his supervisor and the control centre in Herndon with high priority. His

supervisor involves someone else from the Boston control centre to hear the

conversation between the air traffic controller and the pilot. The air traffic

controller keeps following the plane using the radar screen. When he realizes that

the plane is entering the New York control centre area, he involves his colleagues

in the exception handling effort. When New York controllers connect to the

exception handling service they will be informed on the situation details.

When the plane hits the tower, the New York controller issues the information on

the system. A message could have been broadcasted to every controller to report

any plane with no transponder signals. Using the system, the information could

have been spread easier through the air traffic control system involving the most

adequate operators on the handling effort.

A new monitoring task could have been inserted to follow all missing planes (to

replace the white board). Controllers would report on a screen available to

everyone on the suspicious flights. The screen would display flight information,

the reporting control centre and the controller that has responsibility on the flight.

Any update on the flight information could be issued as soon as available

facilitating information flow. Table 6.1 is chronological list of the events and how

users might have used the system.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

194

Table 6.1. Timeline for the 9/11 events and system usage

Time Event System usage

 American Airlines (AA) Flight 11
instance created at check in.

8:15 AA Flight 11 transponder signals
disappear and pilots do not answer air
traffic controller calls.

Expected exception signalled. The
recovery procedure is well known and
the controller starts processing it.

8:16 Air traffic controller hears a voice in the
cockpit: “We have some planes. Just stay
quite and you will be ok.”

Unexpected exception signalled. The
situation is similar to a hijacked
situation; however the phrase heard is
not common and worries the national
operations manager at the Herndon
control centre.

8:-- AA flight 11 enters the New York control
centre

Involve the New York air traffic
controllers in the exception handling
process.

8:46 AA flight 11 hits the north tower of the
World Trade Center

Information inserted into the system.
Everyone involved is aware of the
situation.

Broadcast a message informing every
controller in the USA air traffic system.
Start the task to monitor every
suspicious plane.

9:03

United Airlines (UA) Flight 175 hits the
south tower.

Insert information into the system.

9:03
to

9:07

Air traffic control zero declared on the
Northeast area (includes New York):
clear the skies.

Broadcast the decision to inform every
controller in USA to reroute planes.

9:03
to

9:07

Boston regions' air traffic control officials
stop takeoffs and landings.

Broadcast the decision to inform every
controller in USA to reroute planes.

9:08
to

9:11

Departures are stopped nationwide for
aircraft heading to or through New York
and Boston regions' airspace.

Broadcast the decision.

9:25 Federal Aviation Administration (FAA)
stops takeoffs nationwide.

Insert information into the system and
broadcast.

Evaluation

 195

Time Event System usage

9:35 UA Flight 93 begins unauthorized climb,
raising concerns it has been hijacked.

Insert information into the system

9:38 AA Flight 77 crashes into the Pentagon. Insert information into the system

9:45 FAA orders all aircraft to land as soon as
possible.

Broadcast the decision. Set
collaborative mode in collaboration
level strategy to improve local decision
making

10:06 UA Flight 93 crashes in Shanksville, Pa. Insert information into the system

In a situation like the 9/11 event is difficult to conclude how people would have

reacted if they had different tools at their disposal. Nevertheless, this scenario has

inspired our work and helped us understanding how users may be supported on

this type of events. We believe that a system like our solution could have worked

as a facilitator spreading information about the event through the involved users.

The telephone lines wouldn’t be the only way used between users to communicate

and there was always a screen where they could look for updated information on

the event. It would be easier to involve new users because they would have access

to the information on the screen and be informed as new information was being

collected.

This example is relevant as a scenario where the purposed solution may adjust to a

concrete situation users’ face on their organizational activities: working under

model guidance and change to map guidance when the situation is no longer

predicted in the model. Map guidance support to users was also illustrated by the

usage of an interactive tool where users insert data about the suspicious planes.

This information could have been constantly updated by the controllers and

displayed on a large screen in the Herndon control centre.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

196

6.2 The Port Authority Case

The Port Authority has the responsibility to manage all business activities within

its jurisdiction that includes the river and the shore side. The Port Authority is a

private company where the Portuguese state is the only shareholder and manages

all vessels and cargo transfers to and from ships. All commercial activities

installed on the shore are also under the jurisdiction of the Port Authority that

issues licences and contracts for the rented places.

The businesses processes modelled in the Port Authority refer to the activity that

manages space rentals within the Port Authority jurisdiction. Companies and

individuals rent spaces for business activities for which they pay a fixed amount

in a regular basis (e.g., some clients pay monthly while others pay yearly). For

each rented space, there is a contract between the client and the Port Authority

expressing all the conditions governing the business agreement, e.g., the

description of the rented space, the time period that the space is rented, the

payment periodicity and the amount to pay. A department with 10 employees

negotiates all contracts, manages client related information and assures clients pay

on time. These administrative processes were modelled using the OS platform.

The modelled processes considered contractual activities were for new contracts,

to change existing ones and to terminate them. At the end of every month, the

system automatically instantiates a new process for every rented space that is

supposed to pay its fee. A list of debts and free/occupied zones must be generated

at any moment. Client related information is also managed by an appropriate

process. On every implemented process, users have a link that enables initiating

the exception handling process. To describe the exceptional event, user names

were changed to preserve anonymity.

Evaluation

 197

In the following we will describe the handling of a concrete exceptional event.

Assume that Henry is updating the client’s information when he is informed that

the client has bankrupted. Figure 6.1 shows the Web page of the application

workflow for the client editing task, where the link to manually signal an

exception is shown at the top. On every task the user can instantiate a new

exception.

Figure 6.1. Web page for the client edit workflow

After selecting this link, the user is prompted with the EHW page shown in Figure

5.18. From there, the exception classification must be accomplished, as shown in

Figure 6.212. Henry realizes that time is not critical and classifies it as relaxed. He

also affects John, his direct supervisor, to the exception handling process. He does

not define John as responsible because he wants to talk with him first. He inserts a

brief exception description and classifies the exception as an external event with

departmental impact. He also defines the exception as a true exception, since it

never happened before. The dimensions scope, affected instances, and responsible

were automatically defined by the system.

12 The figure is repeated from page 182 to facilitate the reading

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

198

Figure 6.2. Exception related information

By following the Start handling link shown in Figure 5.18, Henry starts handling

the exception. An email is generated to John with the exception handling

information inserted by Henry and a link to the EHW shown in Figure 5.20.

John may then look at the situation in the EHW page and start a collaboration task

with Henry. He decides using instant messaging. During the conversation, John

realizes that the space occupied by the company is being requested by another

company. He also recognizes that the client’s debt is 50.000€. John tells Henry to

insert this alert in the EHW (cf. Figure 5.23) and then involves Philip, from the

lawyer department, in the exception handling process. John also decides to insert a

monitoring task to identify whether the client has any other debts.

Philip is informed about the situation by email. After reading the email message,

he decides to phone Henry to discuss the details. During the phone conversation,

Evaluation

 199

they decide that Philip will consult an external expert. Philip inserts a comment

about this decision in the external information UI shown in Figure 6.313. Henry

will wait for any news.

Figure 6.3. Inserting external decision-making information

Philip finds out from the expert that the Port Authority should notify the client by

standard mail, giving 5 days to pay the debt. Obtaining no response, they should

start a lawsuit action. Philip writes a letter draft and attaches it to the workflow as

an entry message in the “edit exception classification” action. He then uses the

“collaboration support” step, to discuss with Henry and John to decide on who

will send the letter and who will follow this external action. The asynchronous

email mechanism is adopted for that purpose.

Henry will be in charge of this external recovery action. John will also monitor

the evolution of the case in order to decide or not to release the space to another

client. If Henry finds out the company pays the older debts they have to reanalyze

the situation. Again, Philip and John are notified about the new events. They

realize the older debt does not allow them to start a law suit; however they decide

that John should continuing monitoring this client. If the client pays all his old

debts they close the exception handling process.

13 The figure is repeated from page 187 to facilitate the reading

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

200

The system managed the interactions among users to handle this particular case. It

was easy to involve an expert from another department in the handling process.

Relevant decisions and event related information were easily spread through the

involved users improving their knowledge about the situation details and their

evolution. The relevant information related to the situation was also attached to

the event so it can be used in future events.

6.3 Example Usage in a Brazilian Company

Our work has been tested by Nextsourcing14, a Brazilian consultants company. In

particular, the approach to event classification has been very useful in a big

project relating information technology management in a Brazilian bank that has

over 2.000 branches, 1.000 bank counters, 16.000 cash withdrawal machines and

4.000 servers. The project objective is to standardise the different helpdesks from

the various technological subsystems, to plan technological upgrades and to

develop a common business approach. The company used one paper published in

a conference [Mourão and Antunes, 2003a].

6.4 Summary

In this chapter, we have established the solution’s evaluation in four stages: 1)

visioning; 2) feasibility evaluation; 3) field tests; 4) solution’s usage.

The 9/11 example used throughout the thesis was used as conceptually inspiring

our solution development. The usage of the solution on this scenario is also

14 The company site is available at http://www.nextsourcing.com.br.

Evaluation

 201

discussed. The Port Authority case study is a field study of our solution and the

results were presented. The solution helped users handling this scenario.

Nevertheless, we recognize that this topic still requires deeper investigation and

more case studies should be carried out to understand the solution applicability to

concrete scenarios and the organization types that take better advantages on the

solution. However, the limited time associated to this work prevented deeper

investigation on this subject.

It is also important to realize that part of the work has been already used by a

private company in a large project involving a Bank, and that the published

material has been cited by the researchers in the field.

Chapter 7

Conclusions and Future Work

The major concern addressed by this thesis is adjusting WfMS to real

organizational scenarios. We discussed the current WfMS limitations and

identified that users have the necessity to work freely in order to react to

solicitations they face on their organizational activities. The processes carried out

by organizations have been identified as belonging to a continuum from

unstructured to structured behaviour. The majority of available systems support

users only on both limits of the spectrum boundaries leaving a gap in the middle.

Our solution supports users on both behaviours: works under model guidance

(structured activities) and is capable of switching to map guidance support

(unstructured activities) when necessary.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

204

We started by characterizing the situations that force users to change from model

guidance to map guidance. Existing taxonomies distinguish application failures,

system failures, expected exceptions and unexpected exceptions. We have

enriched this taxonomy by defining a continuum from expected exceptions to

unexpected exceptions where we identify three classes: 1) true expected

exceptions, if the event is equal to a known event, it is said to be truly expected

and the organization has procedures to handle it; 2) extended expected exceptions,

when the event is similar to a known one, even though not be entirely equal, and

the handling procedure is applicable with some minor modifications; 3) effective

unexpected exceptions, are situations for which the organization has no

knowledge that may be used during the event handling. User involvement in the

handling procedure increases when we move from the expected limits to the

unexpected limits of the spectrum, because the existing organizational knowledge

about the event decreases. If there is no knowledge about the event, the system

can not be prepared to handle it and user involvement is mandatory. We have

introduced another dimension on the proposed classification to distinguish the

planning capacity the organization has on the reaction to the event. From the

Organizational Sciences perspective it is recognized that the planning capacity

depends on the uncertainty associated to the task. The higher uncertainty, the

lower is the planning capacity. When users can not define a reaction plan, they

must solve the situation on a problem solving basis – unstructured activities.

These are the ad hoc exceptions, as opposed to the planned exceptions, where a

plan can be defined before the handling procedure is initiated. Our solution is

designed to handle ad hoc effective unexpected exceptions (referred as unexpected

exceptions).

The proposed solution works under model guidance and changes to map guidance

when an unexpected exception is detected. To be capable of supporting both

behaviours the system should complement robustness with flexibility. This

Conclusions and Future Work

 205

system’s facet inspired us to define WfMS resilience as integrating both

characteristics. We have characterized existing solutions to increase WfMS

resilience according in five resilience levels: 1) systemic approaches to handle

failures; 2) systemic approaches to handle expected exceptions; 3) restricted

humanistic open-point approaches; 4) restricted humanistic metamodel

approaches; and 5) unrestricted humanistic support for unstructured activities.

Only one system in the related literature supports resilience level 5 (cf. Section

3.3 for a discussion on this subject). In conclusion, there is an unexplored field in

WfMS resilience. We have then designed the extended reference model for a

system that supports consistency level 5.

Therefore, we have focused on the level 5 characteristics of the solution to support

unstructured activities. Two fundamental system requirements were established

from the beginning: 1) users should not be restricted in any way by any system

condition because they should have the flexibility they have when working

without any system support – the completeness requirement; 2) the map guidance

characteristics of unstructured activities require users to be fed with valuable

updated information from the system and environment – the openness

requirement. These are two mandatory system requirements to effectively support

unstructured activities. On the other hand, some other characteristics were derived

from the problem solving characteristics of the exception handling activities: 1)

handling the event is a collaborative effort where key users must be involved; 2)

involved users should be supported by collaborative mechanisms on their effort of

diagnosing the situation and deciding on the most adequate recovery actions; 4)

coordination is relaxed during unstructured activities and users must be supported

on their coordination efforts; 5) the diagnosis is not finished on the first approach

and is refined during the handling procedure, where the information may be

collected my inserted monitoring tasks or any other means users have at their

disposal; 6) decision support tools, designed for the concrete application scenario,

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

206

should be integrated in the system to support users deciding the most adequate

recovery actions to implement; and 7) users may need to consult the event history.

The system functionality was established based on the identified system

characteristics: escalation; monitoring; diagnosis; communication; collaboration;

recovery; coordination; tools to determine the best solution; and history log. The

organizational trajectory of the event and the escalation mechanism to propagate

the event within the organization were then discussed.

The users’ exception handling basic functions were indentified as: detection;

diagnosing; monitoring; and handling. The intertwined play between diagnosis

and monitoring/recovery is an important characteristic of the solution. The

solution’s architecture is derived from the extended reference model where the

system components and interfaces are identified. The solution is implemented by

a dedicated workflow model that reflects the mentioned characteristics. The

solution was developed and runs on the OS WfMS. Implementation details were

also discussed.

The solution proposed by this thesis is based on new concepts that enlarge the

WfMS applicability in the organizational process spectrum. It is a new concept

that has to be tested on different organizational scenarios using the case study

methodology. We have used an effective unexpected exception event, the 9/11, as

conceptually inspiring of our solution. We recognize the limitations of the

example as a discussion about a radical event where it is difficult to devise how

users could have reacted if some different technology was available. However,

our solution is designed to support users on such “abnormal” scenarios and any

other example would probably suffer from the same difficulty. This example was

chosen because it is well documented and it is a truly effective unexpected

exception. We have also validated the feasibility of the solution by implementing

it using an open source platform, where we intend to publish our code to facilitate

Conclusions and Future Work

 207

its usage by the community. We have also carried out field studies in a real case

study. Nevertheless, we believe it is still necessary to conduct many other field

studies to understand how the solution supports users in real organizational

scenarios. It is also important to understand the type of organizations that have the

major benefit from applying the solution. However, these studies require a long

time frame to enable any results that are of real usage. We have place a significant

effort on evaluating the solution considering the limited time frame we have

available for this work. It is also important to realize that the final test to our

solution will be obtained from the acceptance it will deserve from organizations

and the amount of implementations.

Some implementation details should deserve attention in the near future. We

believe that our system may be improved to allow the definition of multiple

subgroups defined within the scope of a particular exception handling procedure.

The subgroups may have specific sub-goals and be able to implement specific

recovery procedures. Different collaboration mechanisms would be implemented

at the subgroup and at the group levels. However, we have not implemented this

issue because it does not invalidate our general assumption, even though, it may

improve the solution support capability in some scenarios.

On the other hand, improving the solution interface with existing computer

supported communication and collaboration tools may facilitate its usage and

improve its acceptance. The exception data model may also be completed to

reflect all the items mentioned in Section 4.5 improving the solutions capability to

describe the event. Finally, implementing the consistency check within OS is an

important feature that improves the system support on removing inconsistencies

and checking the consistency associated to the recovery actions implemented by

users. The limits imposed to the reachability test could also be subjected to further

research.

References

Abbott, K. R. and Sarin, S. K., Experiences with workflow management: issues

for the next generation, in Proceedings of the 1994 ACM conference on

Computer Supported Cooperative Work, (Chapel Hill, North Carolina,

United States, 1994), ACM Press,113-120.

Adams, M., Facilitating Dynamic Flexibility and Exception Handling for

Workflows. PhD Thesis, Faculty of Information Technology, Queensland

University of Technology, 2007.

Adams, M., Hofstede, A. H. T., Edmond, D., and van der Aalst, W., Facilitating

Flexibility and Dynamic Exception Handling in Workflows, in

Proceedings of the CAiSE'05 Forum, (Porto, Portugal, 2005),45-50.

Adams, M., Hofstede, A. H. T., and van der Aalst, W., Worklets: A Service-

Oriented Implementation of Dynamic Flexibility in Workflows, in On the

Move to Meaningful Internet Systems 2006, OTM Confederated

International Conferences, (, 2006), Springer-Verlag,291-398.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

210

Agostini, A. and De Michelis, G. Improving Flexibility of Workflow Management

Systems. In van der Aalst, W. D. J. Oberweis, ed. Business Process

Management: Models, Techniques, and Empirical Studies. Springer-

Verlag, 2000a: 218-234.

Agostini, A. and De Michelis, G., A light workflow management system using

simple process models, Computer Supported Cooperative Work, 9, 3

(2000b), 335-363.

Agostini, A., De Michelis, G., and Loregian, M., Undo in Workflow Management

Systems, in Business Process Management 2003, (Eindhoven, The

Netherlands, 2003), Springer-Verlag,321-335.

Alonso, G., Agrawal, D., and El Abbadi, A., Process synchronization in workflow

management systems, in Parallel and Distributed Processing, 1996.

Eighth IEEE Symposium on, (, 1996c),581-588.

Alonso, G., Agrawal, D., El Abbadi, A., and Kamath, M., Advanced Transaction

Models in Workflow Contexts, in 12th International Conference on Data

Engineering, (New Orleans, Louisiana, 1996b), IEEE International,574-

581.

Alonso, G., Agrawal, D., El Abbadi, A., Kamath, M., Guenthoer, R., and Mohan,

C., Advanced Transaction Models in Workflow Contexts, in Proc. 12th

International Conference on Data Engineering, (New Orleans, USA,

1996a).

Alonso, G., Hagen, C., Agrawal, D., El Abbadi, A., and Mohan, C., Enhancing the

fault tolerance of workflow management systems, IEEE Concurrency, 8,

3 (2000), 74 -81.

References

 211

Alonso, G., Kamath, M., Agrawal, D., El Abbadi, A., Guenthoer, R., and Mohan,

C. Failure Handling in Large Scale Workflow Management Systems, 1994.

Bassil, S., Rinderle, S., Keller, R., Kropf, P., and Reichert, M., Preserving the

Context of Interrupted Business Process Activities, in 7th International

Conference on Enterprise Information Systems (ICEIS 2005), (Miami,

USA, 2005).

Basten, T., Terms of Nets: System Design with Petri Nets and Process Algebra.

PhD Thesis, Eindhoven University of Technolog, 1998.

Bernstein, A., How can cooperative work tools support dynamic group process?

bridging the specificity frontier, in CSCW '00: Proceedings of the 2000

ACM conference on Computer supported cooperative work, (Philadelphia,

2000), ACM Press,279-288.

Blumenthal, R. and Nutt, G. J., Supporting unstructured workflow activities in the

Bramble ICN system, in Proceedings of conference on Organizational

computing systems, (Milpitas, California, United States, 1995), ACM

Press,130-137.

Borgida, A. and Murata, T., Tolerating Exceptions in Workflows: a Unified

Framework for Data and Processes, in Wacc '99, (, 1999), ACM Press.

Bowers, J., Button, G., and Sharrock, W., Workflow From Within and Without:

Technology and Cooperative Work on the Print Industry Shopfloor, in

European Conference on Computer Supported Cooperative Work,

(Stockholm, Sweden, 1995),51-66.

Breitbart, Y., Deacon, A., Schek, H. J., Sheth, A. P., and Weikum, G., Merging

application-centric and data-centric approaches to support transaction-

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

212

oriented multi-system workflows, ACM SIGMOD Record, 22, 3 (1993),

23-30.

Burns, T. and Stalker, G., The management of innovation. London: Tavistock

Publications, 1961.

Bussler, C., Enterprise wide workflow management, IEEE Concurrency, 7, 3

(1999), 32-43.

Casati, F., Models, Semantics, and Formal Methods for the Design of Workflows

and their Exceptions. PhD Thesis, Politecnico di Milano, 1998.

Casati, F., Ceri, S., Paraboschi, S., and Pozzi, G., Specification and

Implementation of Exceptions in Workflow Management Systems, ACM

Transactions on Database Systems, 24, 3 (1999), 405-451.

Casati, F., Ceri, S., Pernici, B., and Pozzi, G., Workflow Evolution, Data and

Knowledge Engineering, 24, 3 (1996), 211-238.

Casati, F. and Pozzi, G., Modelling exceptional behaviors in commercial

workflow management systems, in Proc. IFCIS, International Conference

on Cooperative Information Systems, CoopIS '99, (Edinburgh, UK, 1999),

IEEE International,127-138.

Chen, Q. and Dayal, U., A transactional nested process management system, in

Data Engineering, 1996. Proceedings of the Twelfth International

Conference on, (, 1996),566-573.

Chiu, D. K., Exception Handling in an Object-oriented Workflow Management

System. PhD Thesis, Hong Kong University of Science and Technology,

2000.

References

 213

Chiu, D. K., Li, Q., and Karlapalem, K., WEB Interface-Driven Cooperative

Exception Handling in ADOME Workflow Management System,

Information Systems, 26, 2 (2001), 93-120.

Combi, C., Daniel, F., and Pozzi, G., A Portable Approach to Exception Handling

in Workflow Management Systems, in OTM Conferences - CoopIS’06,

(2006), Springer-Verlag,201-218.

Dayal, U., Hsu, M., and Ladin, R., Organizing Long-Running Activities with

Triggers and Transactions, in Int. Conf. on Management of Data

(SIGMOD'90), (Atlantic City, NJ, USA, 1990).

Dayal, U., Hsu, M., and Ladin, R., A Transactional Model for Long-Running

Activities, in 17th Int. Conf. on Very Large Data Bases (VLDB'91),

(Barcelona, Spain, 1991).

De Michelis, G. and Grasso, M. A., Situating conversations within the

language/action perspective: the Milan conversation model, in

Proceedings of the 1994 ACM conference on Computer supported

cooperative work, (Chapel Hill, North Carolina, USA, 1994), ACM Press.

Deiters, W. and Gruhn, V., The Funsoft Net Approach to Software Process

Management, International Journal of Software Engineering and

Knowledge Engineering, 4, 2 (1994), 229-256.

Dellarocas, C. and Klein, M., A Knowledge-based approach for handling

exceptions in business processes, in Proc. of the 8th Workshop on

Information Technologies and Systems (WITS'98), (Helsinki, Finland,

1998).

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

214

Donaldson, L. The normal science of structural contingency theory. In Hardy, C.

N. W., ed. Handbook of organization studies. Sage Publications, 1996: 57-

76.

Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., and Zbyslaw, A.,

Freeflow: mediating between representation and action in workflow

systems, in Pro. of the 1996 ACM conference on Computer Supported

Cooperative Work, (New York, 1996), ACM Press.

Eder, J. and Liebhart, W., The Workflow Activity Model WAMO, in Int. Conf. on

Cooperative Information Systems, (Vienna, Austria, 1995).

Eder, J. and Liebhart, W., Workflow Recovery, in 1st IFCIS Intl. Conf. on

Cooperative Information Systems (CoopIS'96), (Brussels, Belgium, 1996),

IEEE International,124 - 134.

Eder, J. and Liebhart, W., Contributions to Exception Handler in Workflow

Management, in Int. Conf. on Extended Database Technology (EDBT'98),

Workshop on Workflow Management Systems, (Valencia, Spain, 1998).

Edmond, D. and Hofstede, A. H. T., A Reflective Infrastructure for Workflow

Adaptability, Data and Knowledge Engineering, 34, 3 (2000), 271-304.

Ellis, C., Information Control Nets: A mathematical model of office information

flow, in Proc. of the 1979 ACM conf. on Simulation and Modelling of

Computer Systems, (, 1979),225-239.

Ellis, C. and Keddara, K. A Workflow Change is a Workflow. In van der Aalst,

W. D. J. Oberweis, ed. Business Process Management: Models,

Techniques, and Empirical Studies. Springer-Verlag, 2000: 201-217.

References

 215

Ellis, C., Keddara, K., and Rozenberg, G., Dynamic change within workflow

systems, in Proc. of conf. on Organizational computing systems, (Milpitas,

CA, USA, 1995), ACM Press,10-21.

Ellis, C., Keddara, K., and Wainer, J. Modeling Workflow Dynamic Changes

Using Timed Hybrid Flow Nets. In van der Aalst, W. D. M. Giorgio Ellis,

ed. Workflow Management: Net-based Concepts, Models, Techniques, and

Tools (WFM'98). Lisbon, Portugal, 1998: 109-128.

Ellis, C. and Nutt, G. J., Office Information Systems and Computer Science, ACM

Computing Surveys, 12, 1 (1980), 27-60.

Ellis, C. and Nutt, G. J., Modeling and enactment of workflow systems, in

Application and Theory of Petri Nets, (Chicago, Illinois, USA, 1993),

Springer-Verlag,1-16.

Esparza, J. and Nielsen, M., Decibility Issues for Petri Nets - a survey, Journal of

Information Processing and Cybernetics, 30, 3 (1994), 143-160.

Faustmann, G., Configuration for Adaptation - A Human-centered Approach to

Flexible Workflow Enactment, Computer Supported Cooperative Work,

9, 3 (2000), 413-434.

Fayol, H., General and Industrial Management. London: Pitman, 1919.

Galbraith, J. R., Organization Design. Addisson-Wesley, 1977.

Georgakopoulos, D., Hornick, M., and Sheth, A. P., An Overview of Workflow

Management: From Process Modelling to Workflow Automation

Infrastructure, Distributed and Parallel Databases, 3, 2 (1995), 119-154.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

216

Goodenough, J. B., Exception handling: issues and a proposed notation,

Communications Of The ACM, 18, 2 (1975), 683-693.

Grigori, D., Casati, F., Dayal, U., and Shan, M. C., Improving Business Process

Quality through Exception Understanding, Prediction, and Prevention, in

27th Int. Conf. on Very Large Databases (VLDB'01), (Rome, Italy, 2001).

Guimarães, N., Antunes, P., and Pereira, A. P. The Integration of Workflow

Systems and Collaboration Tools. In Dogaç, A. K. Leonid Ozsu, ed.

Advances in Workflow Management Systems and Interoperability.

Istambul, 1997.

Hagen, C. and Alonso, G., Exception Handling in Workflow Systems, IEEE

Transactions On Software Engineering, 26, 10 (2000), 943-958.

Hammer, M., Howe, W. G., Kruskal, V. J., and Wladawsky, I., A very high level

programming language for data processing applications, Communications

Of The ACM, 20, 11 (1977), 832-840.

Han, Y. HOON - A Formalism Supporting Adaptive Workflows, 1997.

Han, Y., Sheth, A. P., and Bussler, C., A Taxonomy of Adaptive Workflow

Management, in Conf. on Computer Supported Cooperative Work -

Workshop - Towards Adaptive Workflow Systems, (Seattle, WA, USA,

1998), ACM Press.

Hatch, M., Organization Theory - modern, symboplic, and post-modern

perspectives. Oxford University Press, 2006.

Hayes, N., Work-arounds and Boundary Crossing in a High Tech Optronics

Company: The Role of Co-operative Workflow Technologies, Computer

Supported Cooperative Work, 9, 3 (2000), 435-455.

References

 217

Heinl, P., Exceptions During Workflow Execution, in Int. Conf. on Extended

Database Technology (EDBT'98), Workshop on Workflow Management

Systems, (Valencia, Spain, 1998).

Hollingswoorth, D. Workflow Management Coalition - The Reference Model

TC00-1003. WFMC, 1995.

Hsu, M. and Kleissner, K., ObjectFlow: Towards a process management

infrastructure, Distributed and Parallel Databases, 2 (1996), 169-194.

Hwang, S. Y., Ho, S. F., and Tang, J., Mining Exception Instances to Facilitate

Workflow Exception Handling, in 6th Int. Conf. on Database Systems for

Advanced Applications, (Hsinchu, Taiwan, 1999).

Jablonski, S. and Bussler, C., Wokflow Management: Modeling Concepts,

Architecture, and Implementation. UK: Thompson Computer Press, 1996.

Jin, W. W., Rusinkiewicz, M., Ness, L., and Sheth, A. P., Concurrency control

and recovery of multidatabase work flows in telecommunication

applications, in SIGMOD '93: Proceedings of the 1993 ACM SIGMOD

international conference on Management of data, (Washington, D.C.,

United States, 1993), ACM Press,456-459.

Jorgensen, H. D., Interaction as Framework for Flexible Workflow Modelling, in

Group '01, (Boulder, Colorado, USA, 2001), ACM Press.

Kamath, M. and Ramamritham, K., Failure Handling and Coordinated Execution

of Concurrent Workflows, in Proc. of 14th International Conference on

Data Engineering, (Orlando, Florida, 1998),334-341.

Kiepuszewski, B., Hofstede, A. H. T., and Bussler, C., On Structured Workflow

Modelling, in Twelfth International Conference on Advanced Information

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

218

Systems Engineering (CAiSE'2000), (Stockholm, Sweden, 2000),

Springer-Verlag,431-445.

Kiepuszewski, B., Hofstede, A. H. T., and van der Aalst, W. Fundamentals of

Control Flow in Workflows, 2001.

Klein, M. and Dellarocas, C., A Knowledge-Based Approach to Handling

Exceptions in Workflow Systems, Computer Supported Cooperative

Work, 9, 3 (2000), 399-412.

Leymann, F., Workflow-based applications, IBM Systems Journal, 36, 1 (1997),

102-123.

Luo, Z., Knowledge sharing, Coordinated Exception Handling, and Intelligent

Problem Solving for Cross-Organizational Business Processes. PhD

Thesis, Dep. of Computer Sciences, University of Georgia, 2001.

Luo, Z., Sheth, A. P., Kochut, K. J., and Arpinar, I. B. Exception Handling for

Conflict Resolution in Cross-Organizational Workflows, 2002.

Medina-Mora, R., Winograd, T., Flores, R., and Flores, F., The action workflow

approach to workflow management technology, in Cscw'92, (Toronto,

Ontario, Canada, 1992), ACM Press,281-288.

Mintzberg, H., Estrutura e Dinâmica das Organizações. Publicações Dom

Quixote, 1999.

Mohan, C., Alonso, G., Guenthoer, R., and Kamath, M., Exotica: A Research

Perspective on Workflow Management Systems, Data Engineering

Bulletin, 18, 1 (1995), 19-26.

Morgan, G., Images of Organizations. Sage Publications, 1997.

References

 219

Mourão, H. R. and Antunes, P., Suporte à Intervenção de Operadores no

Tratamento de Excepções em Fluxos de Trabalho, in 4ª Conferência da

Associação Portuguesa de Sistemas de Informação, (Porto, Portugal,

2003a),29-42.

Mourão, H. R. and Antunes, P., Supporting Direct User Interventions in

Exception Handling in Workflow Management Systems, in 9th

International Workshop on Groupware, CRIWG 2003, (Autrans, France,

2003b), Springer-Verlag,159-167.

Mourão, H. R. and Antunes, P., Exception Handling Through a Workflow, in

CoopIS 2004: Proceedings of the conference: On the Move to Meaningful

Internet Systems 2004: CoopIS, DOA, and ODBASE, (Agia Napa, Cyprus,

2004c), Springer-Verlag,37-54.

Nielsen, M., Rozenberg, G., and Thiagarajan, P., Elementary transition systems,

Theoretical Computer Science, 16, 1 (1992), 3-33.

Nomura, T., Hayashi, K., Hazama, T., and Gudmundson, S., Interlocus:

workspace configuration mechanisms for activity awareness, in Conf. on

Computer-Supported Cooperative Work, (Seattle, Washington, USA,

1998), ACM Press.

Nutt, G. J., The evolution towards flexible workflow systems, Distributed Systems

Engineering Journal, 3, 4 (1996), 176-294.

OpenSymphony (2007), The Open Symphony Project, www.opensymphony.com,

last consulted on 2007/10/09

Perrow, C., Complex organizations - a critical essay. McGraw-Hill, 1986.

http://www.opensymphony.com/

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

220

Perrow, C., Normal Accidents - Living with High-Risk Systems. Princeton

University Press, 1999.

Petri, C. A., Kommunikation mit Automaten. PhD Thesis, Institut fur

instrumentelle Mathematik, Bonn instrumentelle Mathematik, 1962.

Reichert, M. and Dadam, P., ADEPTflex - Supporting Dynamic Changes of

Workflows Without Loosing Control, Journal of Intelligent Information

Systems, 10, 2 (1998), 93-129.

Reichert, M., Dadam, P., and Bauer, T., Dealing with Forward and Backward

Jumps in Workflow Management Systems, Software and Systems

Modeling, 2, 1 (2003), 37-58.

Reisig, W., Petri Nets: An Introduction. Springer-Verlag, 1985.

Rinderle, S., Schema Evolution in Process Management Systems. PhD Thesis,

University of Ulm, 2004b.

Rinderle, S., Reichert, M., and Dadam, P., Evaluation of Correctness Criteria for

Dynamic Workflow Changes, in Proc. Int'l Conf. on Business Process

Management (BPM '03), (Eindhoven, Netherlands, 2003), Springer-

Verlag,41-57.

Rinderle, S., Reichert, M., and Dadam, P., Correctness criteria for dynamic

changes in workflow systems - a survey, Data and Knowledge

Engineering, 50, 1 (2004a), 9-34.

Russel, N., van der Aalst, W., and Hofstede, A. H. T., Workflow Exception

Patterns, in 18th International Conference on Advanced Information

Systems Engineering (CAiSE'06), (, 2006), Springer-Verlag,288-302.

References

 221

Saastamoinen, H., On the Handling of Exceptions in Information Systems. PhD

Thesis, University of Jyväskylä, 1995.

Sadiq, S. W., Handling Dynamic Schema Change in Process Models, in Database

Conference, 2000. ADC 2000. Proceedings. 11th Australasian, (, 2000a),

IEEE International,120-126.

Sadiq, S. W., On Capturing Exceptions in Workflow Process Models, in

Proceedings of the 4th International Conference on Business Information

Systems, (Poznan, Poland, 2000c).

Sadiq, S. W., Marjanovic, O., and Orlawska, M., Managing Change and Time in

Dynamic Workflow Processes, International Journal of Cooperative

Information Systems, 9, 1 (2000b).

Schmidt, K., Of maps and scripts - the status of formal constructs in cooperative

work, in Proceedings of the international ACM SIGGROUP conference on

Supporting group work (GROUP '97): the integration challenge,

(Phoenix, Arizona, United States, 1997), ACM Press,138-147.

Sheth, A. P., Georgakopoulos, D., Joosten, S. M., Rusinkiewicz, M., Scacchi, W.,

Wileden, J., and Wolf, A. L., Report from the NSF workshop on workflow

and process automation in information systems, ACM SIGMOD Record,

25, 4 (1996), 55-67.

Strong, D. M. and Miller, S. M., Exceptions and Exception Handling in

Computerized Information Systems, ACM Transactions on Information

Systems, 13, 2 (1995).

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

222

Suchman, L. A., Office procedure as practical action: models of work and system

design, ACM Transactions on Office Information Systems, 1, 4 (1983),

320-328.

Suchman, L. A., Plans and Situated Actions. MIT Press, 1987.

Suchman, L. A., Do Categories Have Politics? The Language/Action Perspective

Reconsidered, in Proceedings of the Third European Conference on

Computer Supported Cooperative Work, (, 1993),1-14.

USA TODAY, 2007, Part I. Terror attacks brought drastic decision: Clear the

skies. www.usatoday.com/news/sept11/2002-08-12-clearskies_x.htm,

consulted on 2007/10/09

van der Aalst, W. Verification of Workflow Nets. In Azéma, P. B. G., ed.

Application and Theory of Petri Nets. Berlin, Germany: Springer-Verlag,

1997: 407-426.

van der Aalst, W., The Application of Petri Nets to Workflow Management,

Journal of Circuits, Systems and Computers, 8, 1 (1998), 21-66.

van der Aalst, W. Workflow Verification: Finding Control-Flow Errors using

Petri-net-based Techniques. In van der Aalst, W. D. J. Oberweis, ed.

Business Process Management: Models, Techniques, and Empirical

Studies. Berlin: Springer-Verlag, 2000: 161-183.

van der Aalst, W., Exterminating the Dynamic Change Bug: A Concrete

Approach to Support Change, Information Systems Frontiers, 3, 3 (2001),

297-317.

http://www.usatoday.com/news/sept11/2002-08-12-clearskies_x.htm

References

 223

van der Aalst, W. and Basten, T., Inheritance of workflows: an approach to

tackling problems related to change, Theoretical Computer Science, 270,

1 (2002), 125-203.

van der Aalst, W., Basten, T., Verbeek, H., Verkoulen, P., and Voorhoeve, M.,

Adaptive Workflow: On the interplay between flexibility and support, in

Proceedings of the First International Conference on Enterprise

Information Systems, (Setúbal, Portugal, 1999),353-360.

van der Aalst, W. and Berens, P., Beyond Workflow Management: Product-

Driven Case Handling, in GROUP 2001, Boulder, Colorado, USA, (,

2001), ACM Press.

van der Aalst, W., Hofstede, A. H. T., Kiepuszewski, B., and Barros, A. Workflow

Patterns, 2002.

van der Aalst, W. and van Hee, K., Workflow Management. London, England:

MIT Press, 2002.

Vojevodina, D., Kulvietis, G., and Bindokas, P., The method for e-business

exception handling, in Intelligent Systems Design and Applications, 2005.

ISDA '05. Proceedings. 5th International Conference on, (, 2005), IEEE

International,203-208.

Wachter, H., ConTracts: a means for improving reliability in distributed

computing, in Compcon Spring '91. Digest of Papers, (, 1991),574-578.

Weber, B. and Wild, W., An Agile Approach to Workflow Management, in

Proceedings of Modellierung 2004, (Marburg, Germany, 2004),187-201.

Weigand, H., Introduction to Special Issue on: Two decades of the language-

action perspective, Communications Of The ACM, 49, 5 (2006), 44-46.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

224

Weske, M., Formal foundation and conceptual design of dynamic adaptations in a

workflow management system, in System Sciences, 2001. Proceedings of

the 34th Annual Hawaii International Conference on, (, 2001),2579-2588.

Winograd, T., Categories, disciplines, and social coordination, Computer

Supported Cooperative Work, 3, 2 (1994), 191-197.

Winograd, T., Designing a new foundation for design, Communications Of The

ACM, 49, 5 (2006), 71-74.

Winograd, T. and Flores, F., Understanding Computers and Cognition: A new

Foundation for Design. Norwood, New Jersey: Ablex Pubs Corporation,

1986.

Worah, D. and Sheth, A. P. Transactions in Transactional Workflows. In Jajodia,

S. K. Larry, ed. Advanced Transaction Models and Architectures. Kluwer

Academic Publishers, 1997.

WfMC 1999, Workflow Management Coalition - Terminology & Glossary, TC00-

1011. WFMC, 1999.

WfMC 2007, The Workflow Management Coalition, Http://www.wfmc.org, last

consulted on 2007/10/09

Zacarias, M., Caetano, A., Pinto, S., and Tribolet, J. Modeling Contexts for

Business Process Oriented Knowledge Support. In Knowledge

Management for Distributed Agile Processes. Springer-Verlag, 2005b.

Zacarias, M., Marques, A., Pinto, S., and Tribolet, J., Enhancing Collaboration

with Business Context, in International Workshop on "Cooperative

Systems and Context." 5th International and Interdisciplinary Conference

on Modeling and Using Contexts, (Paris, France, 2005a).

http://www.wfmc.org/

Appendixes

List of appendixes

Appendix A – Using Petri Nets to model workflows

Appendix B – Consistency proof for forward and backward jumps

Appendix C – Relationships between diagnosis and recovery

Appendix D – Citations to our publications

Appendix E – Model for the exception handling workflow

Appendix A – Using Petri Nets to model workflows

Petri Nets have firstly been introduced by Carl Adam Petri [1962]. Since then,

Petri Nets have been applied to various areas and theoretically investigated. In

fact, they are based on sound theoretical foundations and therefore are a natural

choice for modelling systems behaviour [Reisig, 1985; Basten, 1998]. In

particular, Petri Nets have been proposed for modelling workflows in WfMSs

[van der Aalst, 1998; Ellis and Nutt, 1993; Saastamoinen, 1995].

We will abstract from introducing the formalism associated to Petri Nets algebra

because it is not required by our approach. We describe Petri Nets informally to

simplify the reading. The interested reader may consult Aalst [1998] for the

formal representation of nets within the context of workflow systems. In this

appendix, we will start by introducing Petri Nets and then explain how workflow

models can be represented using these nets.

After establishing the static characteristics of Petri Nets we will concentrate on

how they evolve over: the dynamic behaviour.

A Petri Net is defined by Aalst [van der Aalst, 1998] as a bipartite

graph with two node types called place and transitions. The nodes are

connected via direct arcs. Connections between two nodes of the same

type are not allowed. Places are represented by circles and transitions

by line segments perpendicular to the arcs.

Figure A.1 is a Petri Net with one start place P1 and one sink place P6. The start

place is a place that only has outgoing arcs and a sink place is a place that only

has incoming arcs. A place is said to connect to a transition if there is an outgoing

arc from the place to the transition and a transition connects to a place on the same

conditions, i.e., there is an outgoing arc from the transition to the place.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

A.2

P1

P2 P4

P3 P5

P6

T1

T2 T3

T4

Figure A.1. Example of a Petri Net

At any time, the places may contain one or more tokens that are usually called

marks and drawn as black dots. A transition is said to be enabled if every input

place of that transition has at least one marking. If the transition is enabled, it may

fire. The firing of a transition corresponds to remove one mark from every input

place of the transition and placing one mark on every output place of the

transition. Figure A.2 represents the firing of transition T1 in the Petri Net of

Figure A.1. The mark in place P1 (Figure A.2.a) was removed and a mark was

added to places P2 and P4 in Figure A.2.b).

P1

P2 P4

P3 P5

P6

T1

T2 T3

T4

P1

P2 P4

P3 P5

P6

T1

T2 T3

T4

a) T1 is enabled b) T1 fired

Figure A.2. Example of firing a transition in a Petri Net

To model workflows, transitions in Petri Nets correspond to tasks in workflows

and places to conditions. A new mark in the input place P1 of the Petri Net in

Appendix A – Using Petri Nets to model workflows

 A.3

Figure A.1 corresponds to a new instance in the workflow model. Then, task T1

can be executed if the condition associated to place P1 evaluates to true.

Appendix B – Consistency proof for forward and backward

jumps

Backward jump

The backward jump is consistent if the subnet starting at the destination place (P1

in Figure B.1.a)) of the jump and finishing at the original place (P6 in Figure

B.1.a)) can be isolated (including every node in every branch leading from the

start place to the end and every arc that finish or start on those nodes.) From now

on this subnet will be the jump subnet. It is also assumed that the original net

where the jump is performed is consistent.

Proof

To proof the above rule the fourth statement of the Theorem 3 in [van der Aalst,

2000] is used. The starting premise of the theorem is to compose a net N3 by the

replacement of a transition in a net N1 by another net N2. Some properties of the

nets can be obtained from this composition. In particular, the fourth statement: N1

and N2 are consistent if and only if N3 is consistent15.

The first step is to proof that the delimited net is consistent. If the jump subnet is

removed from the original net and a transition is inserted on its place the above

15 The concept of sound found in the theorem is equivalent to consistency without the requirement that tasks

can only be fired once for any achievable marking (safeness concept in the theorem.) In the presented version

of the statement the concept of soundness was replaced by consistency and the mention to safeness has been

removed since it is already included in this thesis definition of consistency. The original statement is: N1 and

N2 are safe and sound if and only if N3 is safe and sound.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

B.2

mentioned statement can be used. The obtained net will be referred as the final net

in this transformation. It should be emphasised that this transformation is in the

opposite direction of the Theorem (from the composed original net to two

individual subnets.) Therefore the original net is N3 in the Theorem, the jump

subnet is N2 and the final net is N1. Then, from the mentioned statement, and

assuming the original net is consistent, both the removed jump net and the final

net are also consistent. Hence, the delimited jump subnet is consistent.

The proof proceeds by noting that jumping to a previous location is equivalent to

insert a copy of the jump subnet just after the place where the jump is originated

(Figure B.1.c)). A dummy transition and place are inserted after P6 in the Figure

B.1.a) obtaining Figure B.1.b) 16. Then, the dummy transition is replaced by a

copy of the jump subnet which results in the net in Figure B.1.c). It should be

emphasised that jump subnet have been kept simple to reduce the figure

complexity. However, the proof holds for any net that complies with the rule.

Since the insertion of a dummy transition in transformation Trans1 is a trivial

operation it is only necessary to proof that Trans2 transforms a consistent net into

another consistent net, i.e., the net obtained by replacing the dummy transition Td

in the original net of Figure B.1.b) by the jump subnet is consistent. The original

net corresponds to N1 in the theorem, the jump subnet to N2 and the obtained net

in Figure B.1.c) to N3. According to the fourth statement the final net is consistent

if and only if both the original net and the jump subnet are also consistent. Since it

is assumed that the original net is consistent and, as proofed above, the jump

subnet is also consistent the final net is consistent. Hence the backward jump is

consistent.

16 Inserting a dummy transition and a place does not alter the net properties. The dummy transition is called a

silent action since it is not observable. Refer to [van der Aalst and Basten, 2002] on this issue.

Appendix B – Using Petri Nets to model workflows

 B.3

�

Jump2

P1

P2 P4

P3 P5

P6

T1

T2 T3

T4

Jump
subnet

P1

P6

Jump
subnet

Td

Pd

a) b)

P1

P6

Jump
subnet

Td

Pd

Jump
subnet

c)

Trans1
Trans2

Figure B.1. Equivalent model for the backward jump with parallel execution

Forward jump by skipping tasks

The jump in Figure B.2.a) is consistent if the subnet starting at the origin of the

jump (P1 in the figure) and finishing at the destination (Pn in the figure) can be

delimited (as defined above in the backward jump.) It is assumed that the original

net is consistent.

Proof.

To proof the above rule the transformation Trans1 in Figure B.2 is used. Making a

jump is equivalent to replace the delimited jump subnet in Figure B.2.b) by the

transition Tj in Figure B.2.b). Once transition Tj fires the mark is moved from

place P1 into place Pn and the jump is accomplished. Therefore, if the final net in

Figure B.2.b) is consistent the jump is consistent. Like in the above proof of the

jump subnet consistency, the Theorem will be used in the reverse order. Net N3 in

the Theorem is the original net (Figure B.2.a)), N1 is the net that results from

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

B.4

Trans1 (Figure B.2.b)) and N2 is the jump subnet. Since subnet N2 replaces the

dummy transition Tj in N1 originating N3 the Theorem holds. Then, from the

fourth statement in the Theorem and because N3 is by assumption consistent, N1

and N2 are consistent. Hence, the forward jump is consistent.

�

P1

Pn

Tn

Pn-1

T1

Jump

a) b)

Jump
subnet

P1

Pn

Tj
Trans1

Figure B.2. Equivalent model for the forward jump by skipping tasks

Forward jump with parallel execution

The forward jump in Figure B.3.a) is consistent if the subnets from P1 to Pn-1 and

from Pn to Pm-1 can be delimited (as defined above in the backward jump.) The

original net is by assumption consistent.

Proof

The forward jump with parallel execution of the skipped tasks is equivalent to the

transformation of the original model in Figure B.1.a) into the model of Figure

B.1.b). The inserted dummy transition Td1 simulates the jump operation; once it

fires two threads are initiated and task Tn+1 (the jump destination) can be executed

in parallel with the skipped tasks T1 to Tn. As in the above proofs, the subnets Tn+1

to Tm-1 and T1 to Tn are sequences to keep the figure simple. However, all the

Appendix B – Using Petri Nets to model workflows

 B.5

statements are valid for any type of net if the mentioned conditions that both

subnets can be delimited are met as it will be proofed

To proof the consistency of the jump it is necessary to proof that the model in

Figure B.3.b) is consistent when obtained from model in Figure B.3.a). The proof

will be obtained by using a series of valid transformations that transform the

model in Figure B.3.a) into the model in Figure B.3.b). The first set of

transformations removes the two subnets from the original model while the

second transformation inserts a parallel thread into the simplified model. Finally,

the removed subnets are inserted again into this newly obtained model with the

two parallel threads.

P1

Pn

Tn

Pn-1

T1

Pm

Pm-1

Tm

Tn+1

P1

Pm

Pn Pd3

Pm-1 Pd

Td1

Tm

Pm-2 Pn-1

Tn+1

Tm-1

T1

Tn

Jump

Jump

Skipped
tasks

Synchronization
point

a) b)

Figure B.3. Equivalent model for the forward jump with parallel execution

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

B.6

Figure B.4. represents the first set of transformations that remove the subnets. In

transformation Trans1 the subnet T1 to Tn is removed from the original net while

Trans2 removes the subnet Tn+1 to Tm. The last transformation joins two dummy

transitions into a single one.

P1

Pn

Tn

Pm

Pm-1

Pn-1

T1

Tm

Trans1

P1

Pn

Pm

Pm-1

Td1

Tm

Trans2

P1

Pn

Pm

Td1

Td2

Trans3

P1

Pm

Td3

Tn+1 Tn+1

a) b) c) d)

Figure A.4. Transformation series: removing the subnets from the original model

Like it was proofed above for the forward jump with skipped tasks the nets

resulting from Trans1 and Trans2 are consistent. Joining the two dummy

transitions into a single one is a trivial operation. Therefore, the final net after

Trans3 is consistent.

Appendix B – Using Petri Nets to model workflows

 B.7

Figure B.5 shows the next transformation that inserts two parallel threads.

According to Rule 3 in van der Aalst [van der Aalst, 1997] the transformation

shown in the figure transforms a consistent net into another consistent net17.

P1

Pm

Td3

P1

Pd1 Pd3

Pd2

Tt1

Pd4

Trans4

Td4

Pm

Tm

Figure B.5. Transformation series: inserting the parallel threads

Finally, in Figure B.6 the dummy transitions TT1 and TT2 are replaced by the

removed subnets T1 to Tn and Tn+1 to Tm. These are also valid transformations as

proofed in the backward jump example since the subnets T1 to Tn and Tn+1 to Tm

are consistent.

17 Even though van der Aalst definition of consistency is not as restrictive as the adopted in this thesis it is

easy to show that if it preserves live and boundness it also preserves safeness.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

B.8

P1

Pm

Pd1 Pd3

Pd2

Tt1

Pd4

Tt2

Td4

Tm

P1

Pm

Pn Pd3

Pm-1 Pd

Td4

Tm

Pm-2 Pn-1

Tn+1

Tm-1

T1

Tn

Trans5

Trans6

Figure B.5. Transformation series: removing the subnets from the original model

The net resulting from these transformations is the final net of the jump

equivalence in Figure B.3.b). Therefore, the final model is consistent and the jump

is consistent.

�

Appendix C – Relationships between diagnosis and recovery

 Some relationships can be established empirically between the exception

diagnosis dimensions related to time and organizational impact and the handling

strategies communication type and collaboration level. These relations only intend

to be used as suggestions and users may follow the strategy they consider more

adequate. Although some field trials should be carried out to validate the

usefulness of these relationships, they seem very intuitive and easy to explain. The

motivating example is used to explain how they can be useful and to verify their

sustainability. These relations may be used by the system to automatically suggest

handling strategies to users. For example, if the classifying dimension time frame

to achieve a solution is set to quick, the system suggests using synchronous

communication devices to establish communication.

The relationships are summarised in Table C.1. Since the time associated with the

exception is usually an independent factor, the following discussion starts with

this dimension. Also, it is important to note that time restrictions have a strong

impact on the way people deal with problems. In the diagnosis classes, two

dimensions related with time have been defined: reaction time and time frame to

achieve solution. The former is important to specify how the person responsible

should be informed about an exception. Then, upon engaging in diagnosis, that

person can define the time frame to achieve solution in a different way than

reaction time; e.g., some monitoring action was immediately implemented but the

final solution can be implemented in a more relaxed time frame. Therefore, once

the parameter time frame to achieve solution is defined, it will have a stronger

effect on the decision process than the reaction time. The time row in Table C.1

reflects this effect and combines these two dimensions into one single variable.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

C.2

The first row in Table C.1 represents the relations between the time dimension on

the diagnosis side and the strategies communication type and collaboration level.

If the time dimension is quick, the appropriate strategy to choose is synchronous.

Synchronous communication mechanisms allow real-time interactions among the

involved actors which is important to reduce the time associated to the exception

handling procedure. On the other hand, if time is relaxed or long, the appropriate

communication strategy is asynchronous because actors may communicate using

deferred systems that do not disturb their ongoing activities. It is important to

realize that the usage of any communication type strategy is not dependent on the

time value. However, if for any reason that depends on other factors, they decide

to use some communication strategy, then they may choose the one referred as the

most appropriate in the table.

Table C.1 Relation between diagnosis and handling strategies

 Communication type Collaboration level

 Synchronous Asynchronous Coordinated Collaborative

Quick Appropriate Appropriate
Time

Relax or
long

 Appropriate Appropriate

Employee NA NA
Organizational
impact Group or

Organization Choose NA

The relation between time and collaboration level strategy also specifies the type

of strategy that should be followed. If time is quick, users should be involved in a

collaborative strategy since they may achieve faster response times than they

would if they have to coordinate their work with other participants. On the other

Appendix C – Relationships between diagnosis and recovery

 C.3

hand, if time is relaxed or long, the coordinated strategy is preferred because

users are aware of the activities and results implemented by others.

The relations between organizational impact on the diagnosis side and the

strategies communication type and collaboration level are represented in the

second row of Table C.1. When the organizational impact is employee, it is

expected that none of the strategies should be used and hence the not applicable

value. If the organizational impact is group or organization, it is expected that

some communication strategy is chosen. Finally, when the organizational impact

is group or organization, no relation exists with the collaboration level because

nothing can be drawn about how actors should collaborate, and hence the value

not applicable in the cell.

Even though one example does not validate the proposed relations it can

invalidate them if any contradiction is found. It can also be used to discuss

their usability on a concrete scenario. The 9/11 motivating example will be

used in the remaining of this section to discuss the relations and how they

can be useful. Table C.2 and Table C.3 result from applying the proposed

classification scheme at the time the second plane hit the tower.

Table C.2. Diagnosis at the time the second plane hit the tower

All organizationOrganizational impact

QuickTime

ValueDimension

All organizationOrganizational impact

QuickTime

ValueDimension

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

C.4

Table C.3. Handling strategies at the time the second plane hit the tower

collaborative mode involving the
whole organization

collaboration level

synchronous communication type

ValueDimension

collaborative mode involving the
whole organization

collaboration level

synchronous communication type

ValueDimension

The quick value on the time dimension forced the synchronous

communication type, i.e., people tended to share relevant information in real

time. The quote from USA Today, “The phone bridges between air traffic

facilities have become emergency hotlines and the reports of possible

hijackings […] flow at a frenetic pace.”, substantiates this argument. On the

other hand, the defined strategy to land all planes adopted a collaborative

mode in Memphis Control centre. This strategy was necessary to decrease

the coordination overhead: all controllers followed their planes until

landing, instead of passing the planes between them. Therefore, the time

dimension was a critical factor selecting the communication type and

collaboration level, which is according to Table C.1.

Concerning the organizational impact, after the Boston controller identified

a hijacked situation, he immediately informed the central office in Herndon.

The evolution of the situation has to be analysed in more detail. Initially, not

many people were involved in the situation and time was relaxed: the plane

was not being followed with high priority and no synchronous

communication mechanism was being used. This is according to our relation

in Table C.1 relating the organizational impact with the communication

type.

Only, when the second plane hit the south tower, and diagnosis dimension

organizational impact increased to organizational and time changed to

Appendix C – Relationships between diagnosis and recovery

 C.5

quick, then the controllers initiated recovery actions and a collaboration

level had to be established, which is according to our relation.

This final discussion may is important to understand how the relations could

be of some use in a situation similar to the example. Using the established

relations the air traffic control system could trigger the appropriated

handling strategies after diagnosis changes, e.g., after the second plane hit

the tower, and the controller in New York changed the diagnosis of reaction

time to quick, this information could have been synchronously transmitted

to all air traffic control centres because it involved the whole organization.

By issuing the event description that generated the new classification

everyone would become aware of the situation. Once the communication

mechanism is established, the decision to land all planes as fast as possible

and to close the USA air space could have been forecast to all controllers

instantaneously.

Finally, controllers could have been empowered by the FAA command

centre to privilege collaboration among coordination whenever the strategy

is safe. As mentioned before, the controllers in Memphis used this strategy

to decrease coordination overhead between controllers.

Appendix D – Citations to our publications

Mourão, H. and P. Antunes (2005) "Supporting Direct User Interventions in

Exception Handling in Workflow Management Systems." Sistemas de

Informação, 17, pp. 39-51. ISSN: 0872-7031.

(1) Vojevodina, D. (2006) “Modelling of E-Business Process Exception Handling

Using Workflow Method”. PhD Thesis. Vilnius Gediminas Technical University.

Vilnius.

Mourão, H. and P. Antunes (2005) A Collaborative Framework for Unexpected

Exception Handling. Groupware: Design, Implementation, and Use. H. Fuks, S.

Lukosch and A. Salgado. Lecture Notes in Computer Science, vol. 3706, pp. 168-

183. Heidelberg, Springer-Verlag.

(1) Aveiro, D. and J. Tribolet (2006) Organizational Functions and Enterprise

Self-Maintenance: A Framework for Integrating Modelling, Monitoring and

Learning. 3rd International CIRP Conference on Digital Enterprise Technology,

Portugal.

(2) Aveiro, D. and J. Tribolet (2006) An Ontology for Organizational Functions:

The Recursive Self-Maintenance Mechanism of the Enterprise 10th IEEE

International Enterprise Distributed Object Computing Conference Workshops

(EDOCW'06).

(3) Adams, M. (2007) Facilitating Dynamic Flexibility and Exception Handling

for Workflows. PhD Thesis. Queensland University of Technology. Faculty of

Information Technology. Brisbane, Australia.

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

D.2

Mourão, H. and P. Antunes (2004) Exception Handling through a Workflow. On

the Move to Meaningful Internet Systems 2004: Coopis, Doa, and Odbase: OTM

Confederated International Conferences, Coopis, Doa, and Odbase. R. Meersman

and Z. Tari. Lecture Notes in Computer Science, vol. 3290, pp. 37-54. Heidelberg,

Springer-Verlag.

(1) Ardissono, L., R. Furnari, A. Goy, G. Petrone and M. Segnan (2006) Fault

Tolerant Web Service Orchestration by Means of Diagnosis. Software

Architecture (Ewsa 2006). Lecture Notes in Computer Science, vol. 4344, pp. 2-

16, Springer Verlag.

(2) Nepal, S., A. Fekete, P. Greenfield, J. Jang, D. Kuo and T. Shi (2005) A

Service-Oriented Workflow Language for Robust Interacting Applications.

CoopIS 2005 – International Conference on Cooperative Information Systems

Agia Napa, Cyprus.

(3) Rinderle, S., S. Bassil and M. Reichert (2006) A Framework for Semantic

Recovery Strategies in Case of Process Activity Failures. 8th International

Conference on Enterprise Information Systems, Paphos, Cyprus.

(4) Combi, C., F. Daniel and G. Pozzi (2006) A Portable Approach to Exception

Handling in Workflow Management Systems. On the Move to Meaningful

Internet Systems 2006: Coopis, DOA, Gada, and ODBASE, OTM Confederated

International Conferences, vol. 4275, pp. 201-218. Montpellier, France, Springer.

(5) Adams, M. (2007) Facilitating Dynamic Flexibility and Exception Handling

for Workflows. PhD Thesis. Faculty of Information Technology, Queensland

University of Technology, Brisbane, Australia.

Appendix D – Citations to our publications

 D.3

(6) Jang, J. (2007) Building Reliable and Robust Service-Based Systems for

Automated Business Processes. PhD Thesis, School of Information Technologies,

University of Sydney, Australia

Mourão, H. and P. Antunes (2003) Supporting Direct User Interventions in

Exception Handling in Workflow Management Systems. Workshop de Sistemas

de Informação Multimédia e Cooperativos, COOP-MEDIA '03, Porto, Portugal,

October 8.

(1) Vojevodina, D. (2005) Exception Handling Automation in E-Business

Workflow Processes. The 12th Doctoral Consortium at CAiSE*05, Porto,

Portugal.

Appendix E – Model for the exception handling workflow
<workflow>

 <initial-actions>

 <action id="1" name="Instantiate WF">

 <pre-functions>

 <function type="class">

 <arg name="class.name">

 com.opensymphony.workflow.util.Caller

 </arg>

 </function>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.NewException

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

 status="Underway" step="10" owner="${caller}"/>

 </results>

 <post-functions>

 <function type="class">

 <arg name="class.name">

 com.hrm.workflows.StartWfs

 </arg>

 </function>

 </post-functions>

 </action>

 </initial-actions>

 <steps>

 <step id="10" name="Edit exception info">

 <external-permissions>

 <permission name="EditExceptionInfo">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

E.2

com.opensymphony.workflow.util.AllowOwnerOnlyCondition

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 </permission>

 </external-permissions>

 <actions>

 <action id="10" name="Start handling">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.opensymphony.workflow.util.AllowOwnerOnlyCondition

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 <function type="beanshell">

 <arg name="script">

String resp= (String) transientVars.get("responsible");

System.out.println("action start handling, resp:"+ resp);

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished" split="1"/>

 </results>

 </action>

 </actions>

 </step>

 <step id="100" name="Collaboration support">

Appendix E – Model for the exception handling workflow

 E.3

 <external-permissions>

 <permission name="Collaborate">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 </permission>

 </external-permissions>

 <actions>

 <action id="1000" name="Define new responsible">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.opensymphony.workflow.util.AllowOwnerOnlyCondition

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 <function type="beanshell">

 <arg name="script">

String resp = (String) transientVars.get("responsible");

System.out.println("action dummy - resp = " + resp);

 </arg>

 </function>

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

E.4

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

 status="Underway"

 step="110" owner="${responsible}"/>

 </results>

 </action>

 <action id="1010" name="Change affected users">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

 status="Underway"

 step="120" owner="${responsible}"/>

 </results>

 </action>

 </actions>

 </step>

 <step id="110" name="Define new responsible">

 <external-permissions>

 <permission name="NewResponsible">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

Appendix E – Model for the exception handling workflow

 E.5

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.opensymphony.workflow.util.AllowOwnerOnlyCondition

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 </permission>

 </external-permissions>

 <actions>

 <action id="1100" name="New responsible defined">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.opensymphony.workflow.util.AllowOwnerOnlyCondition

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

 status="Underway"

 step="100" owner="${responsible}"/>

 </results>

 </action>

 <action id="1110" name="New responsible exit">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

E.6

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.opensymphony.workflow.util.AllowOwnerOnlyCondition

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

 status="Underway"

 step="100" owner="${responsible}"/>

 </results>

 </action>

 </actions>

 </step>

 <step id="120" name="Change affected users">

 <external-permissions>

 <permission name="ChangeAffectedUsers">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 </permission>

 </external-permissions>

Appendix E – Model for the exception handling workflow

 E.7

 <actions>

 <action id="1200" name="Finish change affected users">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

 status="Underway"

 step="100" owner="${responsible}"/>

 </results>

 </action>

 </actions>

 </step>

 <step id="200" name="Exception description">

 <external-permissions>

 <permission name="ChangeInstances">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

E.8

 </condition>

 </conditions>

 </restrict-to>

 </permission>

 <permission name="ExceptionClassification">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 </permission>

 </external-permissions>

 <actions>

 <action id="2000" name="Change association of instances">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

Appendix E – Model for the exception handling workflow

 E.9

 status="Underway"

 step="210" owner="${responsible}"/>

 </results>

 </action>

 <action id="2010" name="Edit exception classification">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

 status="Underway"

 step="220" owner="${responsible}"/>

 </results>

 </action>

 </actions>

 </step>

 <step id="210" name="Change association of instances">

 <external-permissions>

 <permission name="ChangeInstances">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

E.10

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </conditions>

 </restrict-to>

 </permission>

 </external-permissions>

 <actions>

 <action id="2100" name="Finish association of instances">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

 status="Underway"

 step="200" owner="${responsible}"/>

 </results>

 </action>

 </actions>

 </step>

 <step id="220" name="Exception classification">

 <external-permissions>

 <permission name="ExceptionClassification">

 <restrict-to>

 <conditions type="AND">

Appendix E – Model for the exception handling workflow

 E.11

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 </permission>

 </external-permissions>

 <actions>

 <action id="2200" name="Finish exception classification">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

 status="Underway"

 step="200" owner="${responsible}"/>

 </results>

 </action>

 </actions>

 </step>

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

E.12

 <step id="300" name="Recovery actions">

 <actions>

 <action id="3000" name="Execute a recovery action">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"
status="Underway"

 step="300" owner="${responsible}"/>

 </results>

 </action>

 </actions>

 </step>

 <step id="400" name="Monitoring actions">

 <actions>

 <action id="4000" name="Insert monitoring action">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

Appendix E – Model for the exception handling workflow

 E.13

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"
status="Underway"

 step="400" owner="${responsible}"/>

 </results>

 </action>

 </actions>

 </step>

 <step id="500" name="External info">

 <external-permissions>

 <permission name="GenerateApplicationData">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 </permission>

 <permission name="GenerateExternalDecision">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

E.14

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 </permission>

 </external-permissions>

 <actions>

 <action id="5000" name="Insert external information">

 <restrict-to>

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script">true</arg>

 </condition>

 <condition type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.OSUserAffected

 </arg>

 </condition>

 </conditions>

 </restrict-to>

 <pre-functions>

 <function type="class">

 <arg name="class.name">

com.hrm.apss.dominial.opensymphony.exceptions.ResponsibleOwner

 </arg>

 </function>

 </pre-functions>

 <results>

 <unconditional-result old-status="Finished"

 status="Underway"

 step="500" owner="${responsible}"/>

 </results>

 </action>

 </actions>

 </step>

<!--END STATE -->

 <step id="10000" name="WF Finished">

 <actions>

Appendix E – Model for the exception handling workflow

 E.15

 <action id="10000" name="End" auto="true" finish="true">

 <results>

 <unconditional-result old-status="Finished"
status="Finished"

 step="200"/>

 </results>

 </action>

 </actions>

 </step>

 </steps>

 <splits>

 <split id="1">

 <unconditional-result old-status="Finished"

 status="Underway"

 owner="${responsible}" step="100"/>

 <unconditional-result old-status="Finished"

 status="Underway"

 owner="${responsible}" step="200"/>

 <unconditional-result old-status="Finished"

 status="Underway"

 owner="${responsible}" step="300"/>

 <unconditional-result old-status="Finished"

 status="Underway"

 owner="${responsible}" step="400"/>

 <unconditional-result old-status="Finished"

 status="Underway"

 owner="${responsible}" step="500"/>

 /split>

 </splits>

 <joins>

 <join id="1">

 <conditions type="AND">

 <condition type="beanshell">

 <arg name="script"><![CDATA[

 "Finished".equals(jn.getStep(200).getStatus()) &&

 "Finished".equals(jn.getStep(300).getStatus())]]>

 </arg>

 </condition>

 </conditions>

 <unconditional-result old-status="Finished"
status="Underway"

 step="1000"/>

Supporting Effective Unexpected Exception Handling in Workflow Management Systems within Organizational Contexts

E.16

 </join>

 </joins>

</workflow>

	Chapter 1
	1.1 The limits of traditional WfMS
	1.2 The proposed solution
	1.3 Main contributions
	1.4 The research context
	1.5 Publications
	1.6 Organization of this thesis

	Chapter 2
	2.1 Workflow management systems
	2.1.1. WfMS components and main concepts
	2.1.2. Model for a WfMS supporting unstructured activities

	2.2 Organizational Sciences perspective
	2.3 Exceptions in WfMS
	2.3.1. Systems perspective on failures and exceptions
	2.3.2. Organizational perspective on exceptions
	2.3.3. Comparing and integrating perspectives

	2.4 New exception classification
	2.5 Openness and completeness
	2.6 Summary

	Chapter 3
	3.1 Systemic approaches to increase resilience
	3.1.1. Failure handling
	3.1.2. Handling expected exceptions

	3.2 Human oriented approaches to increase resilience
	3.2.1. Metamodel approaches
	3.2.2. Open-point approaches
	3.2.3. Other humanistic approaches
	3.2.4. Systems fully supporting unstructured activities

	3.3 Discussion
	3.4 The expressiveness of metamodel formalisms and their impact in workflow changes
	3.4.1. Modelling languages and their impact in workflow changes
	3.4.2. Dynamic changes in workflow nets modelled using Petri Nets

	3.5 Summary

	Chapter 4
	4.1 Conceptual approach
	4.2 Solution’s state diagram
	4.3 Basic functions
	4.4 Exception detection
	4.5 Exception diagnosis
	4.6 Exception handling strategies
	4.7 Summary

	Chapter 5
	5.1 Architecture
	5.2 Exception handling workflow
	5.3 Automatic and manual exception detection
	5.4 Recovery actions, monitoring actions and support users removing inconsistencies
	5.5 Applications Programmer Interface with the Service
	5.6 Implementation in the OpenSymphony platform
	5.6.1. The OSWorkflow project
	5.6.2. Exception detection and signalling in the OSWF project
	5.6.3. Exception handling in the OSWF project

	5.7 User interaction with the service
	5.8 Exception data model
	5.9 Summary

	Chapter 6
	6.1 The 9/11 conceptually inspiring event
	6.2 The Port Authority Case
	6.3 Example Usage in a Brazilian Company
	6.4 Summary

	Chapter 7
	List of appendixes

