
Enhancing Dependability of Cooperative
Applications in Partitionable Environments ?

François J.N. Cosquer1, Pedro Antunes1 and Paulo Verı́ssimo2

1 IST???-INESCy
2 FC/ULz-INESC

Abstract. This paper presents a pragmatic approach to providing partition pro-
cessing system support for cooperative applications. A method for specifying and
programming application-level partition processing strategies is described. The
system support is based on a partition typing mechanism which allows the applica-
tion programmer to model the relative importance of partitions. This is combined
with a split/merge rules configuration table through which the partition process-
ing strategy is defined. In the context of cooperative application semantics, our
approach combines the correctness of the pessimistic, and the availability of the
optimistic approaches for data management in partitionable environments. The
paper focuses on the practical issues linked with, firstly, the specification, and
secondly, the support at runtime, of the partition processing strategies. This ap-
proach is relevant in the context of large-scale asynchronous distributed systems
such as the Internet, which, as a result of current technology and topology, are
inevitably prone to partitions. Examples are given, illustrating how the partition
support is used and combined with new feedback techniques in order to implement
more robust cooperative environments.

Keywords: Fault-Tolerance, Cooperative Applications, Tool, Configuration, Inter-
connected Networks.

1 Motivation

The growth of interconnected networks has enabled the development of a wide
range of distributed applications. Among the most promising are those dealing
with multi-user collaboration, usually referred to as Computer Supported Coop-
erative Work (CSCW) or groupware. Cooperative applications include tools as
varied as shared-drawing, concurrent engineering, teleconferencing, etc. These

? This work was partially supported by the CEC, through Esprit Project BR 6360 Broad-
cast and CaberNet, Basic Research Network of Excellence 6361 in Distributed Com-
puting Systems.

??? Instituto Superior Técnico - Technical University of Lisboa.
y Instituto de Engenharia de Sistemas e Computadores, R. Alves Redol, 9 - 6o - 1000

Lisboa - Portugal, Tel.+351-1-3100000.
z Faculdade de Ciências da Universidade de Lisboa.

paa
Proceedings of the 2nd European Dependable Computing Conference, EDCC-2, Lecture Notes in Computer Science, vol. 1150, pp. 335-352, 1996, A. Hlawiczka, J. Silva, and L. Simoncini, Eds. Berlin: Springer-Verlag.

cooperative tools have a multitude of application fields including education,
business, medicine, etc.

Cooperative applications represent a high demand for large-scale distributed
systems because they lessen the need for a collection of people to commute to
a single location. Furthermore, the widespread existence of simple cooperative
tools has broken the physical distance barrier and enabled daily interactions
over large distances. However, large-scale communication infrastructures suffer
from problems inherent to the nature of the current technology, topology, and,
of course, sheer dimension and distance. One obvious problem is that they
are prone to partitioning, meaning that sites may occasionally be unable to
communicate with each other. Furthermore, inaccurate failure detection due to
the high variance and unpredictability of communication delays may also lead
to what are known as “virtual partitions”[1].

These problems not only represent an obstacle to the development of new
cooperative applications, but also, to a wider use of existing applications. The
symptoms they generate burn down to one factor: dependability impairments.
In fact, network partitioning hinders the correct execution of any application
that shares state, be it messages or data. The major sources of unreliability are:
blocking upon partitions, and/or inconsistency upon uncontrolled mergers.

Surprisingly, having surveyed a number of groupware applications and
platforms[2], we have found little or no concern for scaling and fault-tolerance
issues in general. Most applications are based on the “absence of partitions”
assumption[1] which, we believe, is not justified when targeting current asyn-
chronous distributed systems. There exist a number of partition processing tech-
niques which have been developed for database and filesystem applications[3,
4]. Such techniques address data consistency and availability issues. Two ex-
treme approaches for these techniques are the pessimistic approach and the op-
timistic approach. The former trades availability for correctness while the latter
allows availability of data but might have to resolve conflicts upon reconnection.

These techniques in their current form do not solve all problems of collabo-
ration-oriented applications. Cooperative applications require a notion of what
is usually referred to as collaboration awareness at all levels, hence the need for
a notion of partition at the programming level. Partition support, as used in this
text, means preserving the notions of control, coordination and cooperation.

In [5], we have pointed out the role of the functionality provided by group-
oriented systems and the requirements of groupware applications. Early group-
oriented systems, like Isis[6], only allow a majority partition to make progress,
minority partitions having to abort. Recent membership protocols are promising
because they integrate the notion of multiple partitions [7, 8].

Another motivation for our work came from connectivity statistics of the
Internet, the largest distributed computing infrastructure today. It was observed
on some links that 95% of partitions do not last on average more than a few
minutes6, a duration which is too high to be ignored and too low to reschedule
the cooperative session taking place.

6 From monthly statistics reports of the T3 backbone in 1994.

The above considerations have led us to believe that dependability of coop-
erative applications would highly benefit from the underlying system support
if the latter could:

– Allow multiple partitions to operate simultaneously.
– Control progress in each partition, according to a correctness specification.
– Provide connectivity feedback clues to users.

The first two objectives are normally antagonistic: they correspond respec-
tively to the aforementioned optimistic and pessimistic policies. The paper
describes an approach for attaining both objectives and thus, contributes to
bridging the gap between application requirements and current limitations of
large-scale asynchronous computing systems.

In a brief explanation, we abandon the primary-partition paradigm, whose
liveness— and thus availability— can be compromised in a large-scale setting,
since several partitions form many often, not rarely none of them being pri-
mary. In that sense, our approach could be termed optimistic. However, we
exploit the conjunction of two attributes, namely: the low rate of conflict oc-
currence due to collaboration awareness superimposed on raw data operations;
and the assumption of short-lived connectivity disruptions. In consequence, we
are capable of defining a semantics that yields the global correctness typical of
pessimistic approaches, whereas we achieve a virtually non-blocking operation,
as seen in optimistic approaches. In that sense, we termed our approach prag-
matic partition processing. At runtime, the user is aware of the occurrence of
partitioning. However, the system support allows seamless transitions between
the various connectivity situations. By allowing multiple partitions to oper-
ate simultaneously, the system support enables applications to proceed during
transient disruptions in connectivity according to the specified semantics. The
third objective, of connectivity feedback, is achieved through the instrumenta-
tion (e.g. failure detection) we put in place to help materialize our pragmatic
semantics. The interested reader will find a more detailed description in [9]. We
believe this work to be an innovative experiment in distributed applications in
general, and in groupware system support in particular.

The paper is organized as follows. Section 2 briefly presents the membership
problem and how partitions are dealt with in group-oriented systems. Section 3
presents NAVCOOP, a groupware platform which constitutes the framework for
the work presented in this paper. It describes PSS, the Partition Support Service,
the NAVCOOP module which implements the partition processing support. Sec-
tion 4 illustrates the applications and our current experience with PSS. Section
5 presents the concluding remarks.

2 Group-Oriented Systems and Partitions

Group-oriented systems can be seen as providing two main services:

– a membership service which maintains consistent information, called the view, about
which processes are involved in a distributed computation at any given time. The

membership protocol forces the system to conform with connectivity information
provided by what is referred to as the Failure Detector (FD).

– a multicast service which provides various semantics of group communication, such
as for example, causal and total ordered multicast[10, 11].

A particular combination of the two services implements what is usually
known as Virtual Synchrony (VS)[6]. However, group-oriented systems suffer
from the fact that failure detectors (FD) are unreliable due to asynchronism in
the underlying system (a result whose foundation lies in the FLP impossibility
result[12]). In practice, this has been partially overcome by early systems such
as Isis, whose FD is tuned to make few mistakes in Local Area Network (LAN)
environments. However, such systems can still partition in case of erroneous
suspicions or broken communication links: they implement what is known
as the primary partition strategy. The system identifies at most one partition
where some pre-defined condition holds (usually, the majority of processes)
and prevents progress in any other partition by forcing processes to leave the
system.

The primary partition offers a simple, yet efficient, solution to a wide range
of distributed applications[13]. This is especially true in LAN environments
because partitions are rare events. However, the primary partition approach
implements a behavior which does not satisfy the initial requirements pre-
sented in Section 1. For example, the system might block as long as the majority
condition is not satisfied. Furthermore, the system forces members of minority
partitions to quit the application.

Recently, new membership protocols have been developed which take into
consideration the problems associated with large-scale distributed systems. This
means that the membership service will deliver (concurrent) views in different
partitions. In[7], a protocol which allows multiple partitions to operate simulta-
neously offers a service referred to as strong-partial membership. Informally, this
means that the service guarantees that, at any time in the system, concurrent
views are non-intersecting. Partial membership services are being implemented
in group-oriented systems like Horus[14], Totem[15] and Transis[16]. Finally,
[17] proposes a fully configurable membership protocol. The customized mem-
bership service is built by composing separate modules, each implementing
some abstract property.

Some systems try to preserve the consistency properties of virtual synchrony
at low level, across partitions. This is the case with the work on extended virtual
synchrony[18]. Our research effort on groupware support has been directed
towards relying on a partial membership service at the communication level, en-
suring virtual synchrony as the baseline communication paradigm. Consistency
in the presence of partitions is achieved by supplying a semantics of partition
to the programmer.

Binding Service

NavTech

Active Session Support

Membership Services Node Failure Suspector

Triggering Conditions

Perf.
Tests

Std.
Tests

Personalities
Library

Distance
Service

Audience
Monitoring

Telepointer
Facility

Output
Filter

Partition Support
Service

Connectivity
Monitoring

Partition
Typing

Split/Merge
Conf.

Failure
Suspector

Config.

NavCoop
Generic
Groupware
Services

Support
Mechanisms

Session Management

User Information
Service

Session
Registration

Service
User

Registration
Service

Output
Filter

Linear

Partial

Level of Service (LoS)

Fig. 1. NAVCOOP functional architecture

3 The NAVCOOP Partition Support Service

3.1 NAVCOOP Overview

NAVCOOP is a groupware platform developed at INESC which is intended to
provide support mechanisms and a set of generic groupware services dedicated
to large-scale networks.

NAVCOOP is based on a group-oriented communication architecture as shown
in Figure 1. An earlier phase of our work emphasized the need for configurable
failure suspectors[9]. More recently, efforts have been devoted to programming
and runtime support mechanisms for partition processing. PSS, Partition Sup-
port Service, is the NAVCOOP module which provides support for partition
processing. PSS is based on two concepts: partition levels and the associated
split/merge rules configuration interface.

3.2 Terminology and System Considerations

In order to avoid possible confusions, we clarify below the key concepts in-
volved with the Partition Support Service.

– Group and sub-group: a group is a set of participants involved in a computa-
tion. A sub-group is a sub-set of the participants in a group originated by

the splitting of a group (typically due to a partition). The semantics chosen
for the membership service implies that concurrent sub-groups are disjoint.

– Partition: designates a system event that leads to the splitting of a group in
two or more sub-groups.

PSS is based on the following assumptions about the underlying system.

– Fault-coverage: the targeted fault-coverage of PSS are link failures. Links may
fail by not delivering data (omission failure). The intention is to cover tem-
porary disruption in connectivity between nodes (i.e. recoverable). Process
crashes may be masked using traditional redundancy techniques[19, 20].

– Dynamic join and leave operations: the underlying group-communication sub-
system allows voluntary “join and leave” operations. The system also differ-
entiates those operations from failure suspicions which lead to the splitting
of the group of processes involved in a computation into sub-groups.

3.3 Levels and Typing

Users interested in participating in a cooperative application first have to reg-
ister their intention. The list of registered users will be the basis for partition
processing support. It is referred to as the initial group as it corresponds to a
partition-free set-up.

The NAVCOOP PSS implements levels. The levels, [1; 2; :::; n], reflect the rel-
ative importance of the group/sub-groups. Level 1 corresponds to the initial
group, level 2 to the second most important, and so forth. The depth, n, is dic-
tated by the needs of the application, as will become clearer ahead. Each level
is specified by means of type and composition definitions:

Level(l; h type, composition i) - specification of the type and composition of
the group/sub-group of level l.

Typing applies the idea of social role or role, a concept found in cooper-
ative applications to model the relative importance of each user. The role is
materialized by two variables: the identity of a participant, and its weight 7. In
PSS, weight values reflect the importance of users, both during the normal op-
eration of a cooperative session, and during partitions. Identities are used to
designate group/sub-groups containing given participants. The composition of
a group/sub-group G is defined by itsm participants pi, and the sum of the indi-
vidual weights w(pi). The total sum of weights in the initial group is referred to
as Wini. The three resulting type and composition specifications are listed below.

– Quorum group/sub-group: specifies that a group/sub-group comprises a
known sum of weights. A group/sub-group G is defined as a quorum Q

group/sub-group iff [
Pm

i=1w(pi) > Q]. Q is a pre-defined value.
– Designated group/sub-group: specifies that a group/sub-group comprises

a set of known user(s). A group/sub-group G is defined as a designated
7 Weights have also been proposed in [21] for maintaining replicated data.

D group/sub-group iff [D � G]. D is a pre-defined set of participants
fpj; :::; pug.

– Combined group/sub-group: specifies that a group/sub-group comprises
a known sum of weightsQ and a set of designated user(s)D. A group/sub-
group G is defined as a combined Q�D group/sub-group iff [

Pm

i=1w(pi) >

Q ^D � G]. Q is a pre-defined value. D is a pre-defined set of participants
fpj; :::; pug.

Formally speaking, the importance of group/sub-groups, expressed by the
levels, is translated into progress specifications:

Progress(l; h progress i) - specification of the progress of participants in a
level l group/sub-group.

The main idea behind decreasing importance is to capture a degradation of
the level of activity a participant is allowed to have, as it gets further away from
the initial group of participants. In classical approaches, progress specifications
are essentially binary: simply allowing all reads and writes (as in a primary par-
tition), or blocking all activity (as in a minority partition). With the mechanisms
we introduced however, we can define richer semantics, such as proceeding
up-to a certain application phase, or execute only a subset of actions.

As soon as the application starts running, the Level(l) is evaluated in increas-
ing order of l (1!n), to determine which level does a given group/sub-group
belong to. Registered users start in the level corresponding to their current
connectivity, obeying the relevant semantics Progress(l).

It is up to the application programmer to define the level depth n, and to
make the several Level(l) and Progress(l) specifications. These mechanisms are
complemented by a configuration interface called the split/merge rules table,
which allows the programmer to specify how the application should respond
to a partition event at runtime.

3.4 Split/Merge rules configuration table

When the application is running, the group communication subsystem forwards
views to the NAVCOOP platform from which the new level is evaluated. The
NAVCOOP level event can be described as one of the following:

Edowngrade(k): The current level was decremented by k levels.
Eupgrade(k): The current level was incremented by k levels.

To each of those events corresponds an application level rule referred to as
split/merge rule. The application programmer defines the code corresponding to
each rule as a way to implement the desired behavior. The split/merge functions
are presented in Table 1. The number of rules to be defined for a level depth of
n is n � (n� 1). This number might appear high at first glance, but in practice a
number of the functions will be identical and/or share code. In any case, there
will always be a tradeoff involved between the programming complexity of the

support, and the functionality enhancement provided to the users at runtime.
However, the services provided by a groupware platform such as NAVCOOP
may drastically simplify the application programmer’s task in what concerns
dependability in face of partitions.

Transition event
Levels Edowngrade(k) Eupgrade(k)

1 func(split1!2)
func(split1!3)
. not applicable
func(split1!n)

2 func(split2!3) func(merge2!1)

.
func(split2!n)

. . .
n func(mergen!1)

func(mergen!2)
not applicable .

func(mergen!n)

Table 1. Split and Merge rules table

3.5 Current Status

NAVCOOP is based on the NAVTECH communication subsystem. Following the
xAMp protocol suite[22], NAVTECH is a new group-oriented communication
subsystem developed at INESC which is intended to support the development
of reliable applications over large-scale networks[23].

The current prototype of NAVCOOP was developed using Horus-based vir-
tual synchrony[14], NAVTECH configurable failure suspector and abstract net-
work layer. NAVCOOP is implemented in C, uses the OSF Motif toolkit, and
runs over a network of UNIX workstations. NAVCOOP mechanisms and the
Horus/NAVTECH protocols run in the same Unix process.

4 Applications and Experience

Terminology. This work bearing relationship with two research fields that use
the same words with different meanings, we are left in the uncomfortable po-
sition of having to make a differentiation. Since we have already used “syn-
chronous” and “asynchronous” with the traditional meaning taken in the dis-
tributed systems community— whether time bounds exist and are known, or

otherwise— we will adopt other terms for synchronous and asynchronous co-
operation as used by the CSCW community. Without any attempt to create a new
terminology, we will use in this paper “synchronized” and “non-synchronized”,
when referring to operations performed simultaneously (i.e at the same time)
or independently (i.e at different time) by users.

We present below two examples which illustrate the benefits of the NAV-
COOP PSS. The first example illustrates how well-accepted groupware artifacts
used for synchronized cooperation can be modified for providing a partition-
resilient behavior. The second example briefly relates our experience with a
“same time/different place” Group Decision Support System showing how
partition support can be integrated in already existing applications.

4.1 Telepointer facility

When designing the NAVCOOP generic services (see Figure 1), we studied and
experimented the way of incorporating feedback in various building blocks.
In order to further improve the level of support at runtime, we explored how
connectivity and partition level information could be integrated in existing
artifacts. The idea consisted of combining the typing information provided by
the PSS with standard cooperative modules using new feedback techniques
for improving group awareness. To illustrate our claim we have selected here
a mechanism frequently used during synchronized cooperative sessions: the
telepointer, which is used for gesture support.

A telepointer is a shared graphical entity which is manipulated by one
participant at a time in order to point or get attention to a specific area or item
of the shared workspace. Telepointer facilities are usually provided by many
synchronized cooperative applications. The telepointer usually assumes that
position, movements and timing of the telepointer are shared by all users. The
aim is to make the telepointing mechanism rich enough to express a user’s
intentions to the whole group.

The basic design problem we address concerns the implementation of a
WYSIWIS paradigm (What You See Is What I See) in presence of long com-
munication delays which may eventually lead to partition. Traditional straight-
forward implementations suffer from the underlying system limitations. The
contradiction between users’ expectations and system limitations results in lost
of shared context and ambiguity.

The principles adopted for the telepointer are illustrated in Figure 2 consist
of the following three steps.

1. The first step avoids flooding the network with too many messages. The telepointer
movement is recorded until the user stops. The recorded movement is then dis-
tributed to other participants in one single message.

2. In the second step, when each participant’s shared space receives a recording, it
executes a playback, i.e., replays the movement. Furthermore it broadcasts an ac-
knowledgement message to the group informing that the operation is completed.

3. In the third step, we use the count of feedback messages from the group participants
to inform the telepointer’s user of the current shared context. The feedback infor-

1

2

3 Feedback from
all members

Shared space

Recording

Wait for
feedback

2 Wait for
feedback

Fig. 2. The Telepointer

mation is displayed using a meter located next to the telepointer (see right part of
Figure 2).

After recording a gesture, the user should refrain from moving the tele-
pointer until knowing that all participants have replayed the gesture. This in-
formation is provided by the meter icon. After the meter goes full, the user is
sure that all participants have seen the telepointer movement. This function-
ality was implemented using the communication service with acknowledged
message deliveries.

The design problem related to partitions is to define which degree of tele-
pointer semantics it is possible to sustain during a partition. Our strategy is to
proceed with telepointer usage but to inform users that not all members will
be aware of the recorded gestures. The functionality of the telepointer is main-
tained in partition mode but the participants are notified that not all original
group members are participating. We have defined a generic scenario in which
there exists a unique major sub-group and possibly many minor sub-groups.

1. A major sub-group holds the telepointer owner and therefore sustains the telepointer
semantics to reachable members;

2. A minor sub-group which does not hold the telepointer owner. A temporary tele-
pointer owner is designated in order to preserve localized telepointer semantics.

The corresponding levels were defined using PSS and are given in Table 2.
Recall that levels are evaluated in increasing order [1 ! n]. The default policy
based on this information allows each sub-group to possess its own telepointer
so as to preserve animation during partition mode. The users are immediately
aware of the situation by seeing a shadowed telepointer. This is illustrated in
the top half of Figure 3. This Figure also shows that the telepointer is displayed
differently to owners/not owners. Also note that, if excluded participants have
not crashed, they also have created their sub-group and entered into partition
mode. It was decided to implement three different graphical aspects for tele-
pointer owner depending on the level (black for initial, black shaded grey for
major and grey shaded black for minor). For not owners, the telepointers is dis-
played in white for the initial group and shaded grey in both the major and minor
sub-groups.

Level Type Composition Progress

1-initial Quorum Q =Wini (all reg. users) unrestricted
2 Designated D =ftelepointer ownerg unrestricted
3 Designated TRUE temporary owner

Table 2. Telepointer PSS Levels

Owner

Merging

Splitting

Owner

Not-owner

Min-Temp-owner

Min-Not-owner

Min-Temp-owner

1->2 1->3 2->3

Min-Temp-owner

2->1 3->1

Not-owner

Min-Not-owner

Not-owner

Maj-owner

Maj-not-owner

Not-owner

Maj-owner

Maj-Not-owner

Not-owner Maj-Not-owner

Min-Not-owner

Owner Maj-owner

Min-Not-owner

3->2

Maj-Not-owner

Maj-Not-owner

Min-Temp-owner

Min-Not-owner

3->3

Oldest-Min-Not-owner

Oldest-Min Temp-owner

Min-Temp-owner

Fig. 3. Partition mode feedback

When participants who were excluded from the major sub-group become
reachable again, the system will terminate the partition mode associated with
the minor sub-group. The system merges and eliminates any condition local to
minor sub-groups. We defined in Table 3 the different merge functions that may
occur. We detail below the various merge cases (see bottom half of Figure 3.

– 2 ! 1: corresponds to the major sub-group merging back to the initial group.
� The owner: the telepointer owner is a user in the major sub-group and the

system decides that it will continue to own it. The telepointer regains its original
graphical aspect and remain in same location.

� Not owner: for all other users who are not owner of the telepointer, the tele-
pointer just regain its graphical aspect.

– 3 ! 1: corresponds to a minor sub-group merging back to the initial group.
� The owner: the temporary telepointer owner of the minor sub-group looses its

privilege and the graphical aspect is changed back to a not owner telepointer.

If the temporary telepointer had been used it moves (animation) to the new
owner’s telepointer location.

� Not owner: the telepointer just regain its original graphical aspect with a possible
animation back to the new owner’s telepointer location.

– 3 ! 2: corresponds to a minor sub-group merging to the major sub-group.

� The telepointer owner: the telepointer was owned by a user in a minor sub-group.
The system will give the telepointer to the owner in the major sub-group. The
telepointer changes its aspect and moves (animation) to the other participant’s
telepointer location.

� Not owner: the telepointer keep the same graphical aspect with a possible
animation to the current major sub-group owner position.

– 3 ! 3: corresponds to 2 minor sub-groups merging.

� The telepointer owner: The system will give the telepointer to the oldest owner
of the 2 minor sub-groups.

� Not owner: the telepointer keeps the same graphical aspect with a possible
animation to the current selected sub-group owner position.

Transition event
Levels Edowngrade(k) Eupgrade(k)

1 func(split1!2) f Shadow telepointer() g

func(split1!3) f Designate temporary owner()

Owner record, others playback()

Shadow telepointer() g

2 func(split2!3) f Designate temporary owner() func(merge2!1) f Owner record, others playback()

Owner record, others playback() Remove shadow() g

Shadow telepointer() g

3 func(merge3!1) f Disable temporary owner()

Move to owner’s position()

Remove shadow() g

func(merge3!2) f Disable temporary owner()

Move to owner’s position()

Remove shadow() g

func(merge3!3) f Change temporary owner()

Move to owner’s position() g

Table 3. Split and Merge rules table

In our telepointer implementation, users are aware of how a synchronized
operation is being carried out. This functionality is complemented by the audi-
ence monitoring service which informs the participant of the current composi-
tion of his/her group/sub-group.

4.2 The NGTool Experiment

Application Overview NGTool is a Group Decision Support System (GDSS)
which runs on Unix workstations over the Internet and uses X Windows and the
OSF Motif toolkit. The NGTool supports same time/different place meetings.
The tool provides synchronized operations over a display space shared by 5/6
users, one of which known as the moderator. The functionality of the NGTool is
described in [24, 25]. The NGTool was ported to the NAVCOOP PSS as depicted
in Figure 4. We will illustrate the implemented functionality for a particular
meeting situation.

Partition
Feedback User Interface

NavTech/Horus
P

artition

Support Service

NGTool
Partition
Specific
Code

Fig. 4. Porting NGTool to NAVCOOP

Figure 5 shows screen dumps of the NGTool of two users, a participant on
the left and the moderator on the right, in the phase when they are generating
and proposing ideas. The ideas are generated (i.e. written down on a text field)
in a private space which is on the screen’s left hand side. Ideas are represented
by a small electric lamp. To propose an idea to the participants of the meet-
ing, the user must drag the idea from the private space to the shared space: the
screen’s right hand side. To mediate this operation the NGTool provides a graph-
ical entity named teleassistant (“switched-on” electric lamp). The teleassistant
controls concurrent accesses to the shared space and coordinates the actions of
the moderator and other users. Since the teleassistant provides feedback to all
users over these events, it is a natural origin for delivering information about
partitions.

Adding Partition Functionality When defining the partition processing strat-
egy, a preliminary study led us to consider the following aspects:

Fig. 5. The NGTool windows

– Relative importance of sub-groups: due to the moderated aspect of the NGTool
session it was decided to discriminate two types of sub-groups. Those are
referred to as moderated and non-moderated depending on whether the sub-
group includes the moderator.

– Temporal factor: we identified two cases depending on the time-frame of the
connectivity disruption. This is because the NGTool session goes through
different phases. As we will discuss below this has consequences on the
merging phase and rules definition.

The NGTool was modified such that when a partition occurs both individual
and group work can proceed. We describe here the strategy adopted during the
phase of generating and proposing ideas. As explained in Section 3, the first task
is to define the levels (see Table 4). This definition means that the application
will only differentiate two kinds of progress depending on the presence of the
moderator. The NGTool designer made this decision since the application is
strongly coordinated by the moderator. This results in the fact that moderated
sub-group will always have higher privileges than non-moderated sub-groups.

Level Type Composition Progress
1-initial Quorum Q =Wini (all reg. users) unrestricted
2 (moderated) Designated D =fmoderatorg unrestricted
3 (non-moderated) Designated TRUE same phase

Table 4. NGTool PSS Partitions Levels

When a partition occurs, the sub-group which includes the moderator is
allowed to proceed work as if no partition had occurred, i.e. users can gen-
erate and propose ideas. However, this sub-group is visually informed of the

partition occurrence, in order to be aware that not all of the original members
are participating. Figure 6 illustrates the situation for the moderated sub-group,
showing a small two-hands icon under the teleassistant. A sub-group which
looses moderation is allowed to generate ideas (in the users’ private spaces)
The graphical partition feedback representation in the non-moderated sub-group
is the opposite of the moderated i.e. grey hand with white shadow. However in
order to comply with the original (non-computerized) NGT semantics, users
in non-moderated sub-groups cannot propose ideas. We are considering future
experiments with more optimistic semantics, such as letting non-moderated
sub-groups propose ideas.

Fig. 6. Partition feedback

When the system merges, it is assumed that the moderated sub-group has
several ideas in its shared space which are not available to the previously
disconnected, non-moderated sub-groups. The merge function must therefore
re-synchronize the shared space by delivering the missing ideas to the non-
moderated sub-groups.

However, the temporal factor aspect influences the merge functions since the
NGTool phase may have changed during the occurrence of the partition. Being
isolated from the moderator of the session, members of the non-moderated sub-
group(s) cannot change session phase. This means that it is possible that a merge
occurs between a moderated sub-group and a non-moderated sub-group which are
not in the same NGTool phase. As a result, the NGTool defined two types of
merges depending on the phases of the session of the various sub-groups merg-
ing. PSS does not provide support for this kind of conditional merge function
(referred to as temporal factor) but only level transition function definition.
Therefore, the functionality was implemented as part of the application. This
resulted in the configuration presented in Table 5.

The main benefits of using the NAVCOOP platform for the development of
the NGTool come from the approach to pragmatic partition processing support.
Although levels and split/merge rules must be defined accordingly to the par-
ticular semantics of the application, NAVCOOP PSS allows tackling the problem
associated with partitions in a structured and manageable way.

Transition event
Levels Edowngrade(k) Eupgrade(k)

1 func(split1!2) f Show moderated partition icon() g

func(split1!3) f Disable public teleassistant()

Show non-moderated partition icon() g

2 func(split2!3) f Disable public teleassistant() func(merge2!1) f Remove partition icon() g

Show non-moderated partition icon() g

3 func(merge3!1) f Enable public teleassistant()

Check phase changes ()

Re-synchronize shared space()

Remove partition icon() g

func(merge3!2) f Enable public teleassistant()

Check phase changes ()

Re-synchronize shared space()

Show moderated partition icon() g

Table 5. Split and Merge rules configuration table

5 Concluding Remarks

The paper presented a method for defining, what we refer to as, pragmatic par-
tition processing strategies, exhibiting the correctness of pessimistic, and the
availability of optimistic approaches to the management of partitionable appli-
cations. Based on a typing mechanism which is combined with a split/merge
configuration table, the Partition Support Service has been integrated in the
NAVCOOP groupware platform.

The pragmatic partition support approach provides a concrete answer to
application designers for tackling situations of temporary deviations from nor-
mal operation due to connectivity problems. It is known that these phenom-
ena contribute to the lack of dependability of distributed applications, and of
cooperative applications in particular. Observed application blocking and data
inconsistency are current symptoms, and they should be addressed by adequate
measures to tolerate partition faults. We proposed reconfiguration mechanisms
to overcome the transient faults caused by partitions, based on the semantics of
cooperative applications, namely, the social roles played by the participants. We
believe these results to be innovative, with regard to approaches taken in other
fields of work, such as distributed databases. The latter depended on lower level
data operation semantics, and were thus less flexible, leading to the pessimistic
versus optimistic dichotomy.

Our method forces/helps the application designers to carefully define the
importance of participants taking part in a cooperative activity. The configura-
tion process is intended to provide a solution for closely modeling the real-life

cooperative activity. The benefits of this approach were illustrated by examples.
At the implementationlevel, this work constitutes an experiment in using group
communication systems services for supporting cooperative applications. Our
experience shows how partial membership services can be used to enhance
cooperative applications support.

Further work is underway to validate our initial results. We need to ensure
that the complexity inherent to the various configurations proposed can be
partially hidden from the application programmer. For example, we aim at
simplifying the rules generation by making this process partially automatic.
Overlooking this issue could be detrimental to the use of groupware support
technologies.

Acknowledgements: The authors would like to thank Jorge Frazão and Nuno Gui-
marães, who, besides the authors, contributed to the two demos where the NGTool
and NAVCOOP support were demonstrated; Broadcast Open Workshop (Grenoble, July,
1995) and the Cyted-Ritos International Workshop on Groupware (Lisboa, September,
1995). We are also grateful to Carlos Almeida, André Zúquete, David Matos, Susan
Tinniswood, Alexandre Lefebvre and Luı́s Rodrigues for commenting on early versions
of this document.

References

1. Aleta Ricciardi, Andre Schiper, and Kenneth Birman. Understanding Partitions and
the No Partition Assumption. In Proceedings of the 4th Workshop on Future Trends of
Distributed Computing Systems, pages 354–360, September 1993.

2. François J.N. Cosquer and Paulo Verı́ssimo. Survey of Selected Groupware Appli-
cations and Supporting Platforms. Technical Report 2nd Year - Vol. 1, BROADCAST,
Rua Alves Redol 9-6o , 1000 Lisboa, Portugal, September 1994. (Also available as
INESC Report RT-21-94).

3. Hector Garcia-Molina Susan B. Davidson and Dale Skeen. Consistency in parti-
tioned networks. Computing Surveys, 17(3):341–370, September 1985.

4. James J. Kistler and M. Satyanarayanan. Disconnected Operation in the Coda File
System. ACM Transactions on Computer Systems, 10(1):3–25, February 1992.

5. François J.N. Cosquer and Paulo Verı́ssimo. The Impact of Group Communication
Paradigms in Groupware Support. In Proceedings of the 5th Workshop on Future Trends
of Distributed Computing Systems, Cheju Island,, August 1995.

6. Kenneth P. Birman and Thomas A. Joseph. Exploiting Virtual Synchrony in Dis-
tributed Systems. In 11th Symposium on Operating Systems Principles, pages 123–138,
November 1987.

7. A. Shiper and A. Ricciardi. Virtually Synchronous Communication based on a weak
failure suspector. In Proceedings of the 23rd Int. Conf. on Fault Tolerant Computing
Systems, June 1993.

8. Danny Dolev, Dalia Malki, and Ray Strong. An Asynchronous Membership Protocol
that Tolerates Partition. Technicalreport, Institute of Computer Science, The Hebrew
University of Jerusalem, Israel, 1995.

9. François J.N. Cosquer, Luı́s Rodrigues, and Paulo Verı́ssimo. Using Tailored Failure
Suspectors to Support Distributed Cooperative Applications. In Proceedings of the 7th
International Conference on Parallel and Distributed Computing and Systems, Washington
D.C., October 1995.

10. Luı́s Rodrigues and Paulo Verı́ssimo. Causal Separators for Large-Scale Multicast
Communication. In Proceedings of the 15th International Conference on Distributed
Computing Systems, June 1995.

11. L. Rodrigues, H. Fonseca, and P. Verı́ssimo. Totally ordered multicast in large-scale
systems. In Proceedings of the 16th International Conference on Distributed Computing
Systems, pages 503–510, Hong Kong, May 1996. IEEE.

12. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Distributed Con-
sensus with One Faulty Process. Journal of the Association for Computing Machinery,
32(2):374–382, April 1985.

13. Kenneth P. Birman and Robbert van Renesse. Reliable Distributed Computing with the
Isis Toolkit. IEEE Computer Society Press, 1994.

14. R. van Renesse, Ken Birman, Robert Cooper, Brad Glade, and Patrick Stephenson.
The Horus System. Technical report, Cornell University, July 1993.

15. Y Amir, L. Moser, P. Melliar-Smith, D. Agarwal, and P. Ciarfella. Fast Message Or-
dering and Membership Using a Logical Token-Passing Ring. In Proceedings of the
13th International Conference on Distributed Computing Systems, pages 551–560, Pitts-
burgh, Pennsylvania, USA, May 1993.

16. Danny Dolev, Dalia Malki, and Ray Strong. A Framework for Partitionable Mem-
bership Service. Technical Report CS95-4, The Hebrew University of Jerusalem,
Jerusalem, Israel, 1995.

17. Matti A. Hiltunen and Richard D. Schlichting. A Configurable Membership Service.
TechnicalReport TR 94-37, University of Arizona, Tucson, AZ 85721, December 1994.

18. L.E. Moser, Y. Amir, P.M. Melliar-Smith, and D.A. Argawal. Extended Virtual Syn-
chrony. In Proceedings of the 14th International Conference on Distributed Computing
Systems, pages 56–65, Poland, June 1994.

19. Flaviu Cristian. Understanding fault-tolerant distributed systems. Communications
of the ACM, 34(2):56–78, February 1991.

20. D. Powell, editor. Delta-4 - A Generic Architecture for Dependable Distributed Comput-
ing. ESPRIT Research Reports. Springer Verlag, 1991.

21. David K. Gifford. Weighted Voting for Replicated Data. In Proceeding of the Sympo-
sium on Operating Systems Principles (SOSP), pages 150–163, 1979.

22. Luı́s Rodrigues and Paulo Verı́ssimo. xAMp: a Multi-primitive Group Communi-
cations Service. In 11th Symposium on Reliable Distributed Systems, pages 112–121,
October 1992.

23. Paulo Verı́ssimo and Luı́s Rodrigues. The NavTech Large-Scale Distributed Com-
puting Platform. TechnicalReport RT-95, Broadcast Project, INESC, Rua Alves Redol
9-6o, 1000 Lisboa, Portugal (in preparation).

24. Pedro Antunes and Nuno Guimarães. Structuring Elements for Group Interation. In
Second Conference on Concurrent Engineering, Research and Applications (CE95), Wash-
ington D.C., August 1995.

25. P. Antunes and N. Guimaraes. NGTool - exploring mechanisms of support to inter-
action. In First CYTED-RITOS International Workshopon GroupwareCRIWG ’5, Lisboa,
Portugal, August 1995. CYTED-RITOS.

This article was processed using the LATEX macro package with LLNCS style

