
User-Interface Support to Group Interaction

Pedro Antunes, Nuno Guimarães
Technical University of Lisboa - INESC �

April 1996

Abstract

This paper describes a user-interface sys-
tem developed to support group interac-
tion for same-time/different-place coopera-
tive applications. The user-interface sys-
tem is based on a model which defines four
types of objects, each one dedicated to ad-
dress a specific issue of group interaction sup-
port: information sharing, interaction con-
trol, structuring of group interactions and
awareness of user activities in the system.
Examples of combination of the above ob-
jects are given for the implementation of talk,
joint editing and telepointer services.

1 Introduction

The computer support to group interaction
consists of three basic functionalities: infor-
mation sharing, control and user-interface.
Information sharing allows to establish a
common context between individuals. This
functionality requires the specification of a
data consistency model. Data consistency
can be preserved through concurrency con-
trol mechanisms [7], e.g. locking, versioning,
history, views, etc.

Group interaction adds the notion of inter-
dependence [8] and coordination [13] to in-
formation sharing. Interdependence means

�Instituto de Engenharia de Sistemas e Computa-
dores, R. Alves Redol, 9 - 6o - 1000 Lisboa - Portugal,
Tel: +351-1-3100000. Direct Line: +351-1-3100223, Fax:
+351-1-3145843. E-mail: fpaa,nmgg@inesc.pt.

that tasks flow from one individual to an-
other while coordination introduces the re-
quirement of interaction control. Several in-
teraction control mechanisms have been pro-
posed [17]: free mechanisms, that rely on the
social protocols established by users and do
not control the access to the medium, floor-
control, semi-formal, based on language and
formal mechanisms.

The user-interface is responsible for me-
diating users with the system. The user-
interface must define a public space, shared
by all users, maintain visual consistency of
objects which are placed in the public space
and, since group activities are assembled
from a mixture of private and public activ-
ities, manage the interconnection of private
and public spaces. One more user-interface
requirement exists: it must provide feed-
back on information sharing, interaction con-
trol and management of public and private
spaces.

The computer support to group interaction
can also be characterised in time/space do-
mains [16]. The combination of these do-
mains defines four different types of sys-
tems: (1) same-time/same-place, which fo-
cus on the computer support to informa-
tion sharing, since control and user-interface
can be established face-to-face; (2) different-
time/different-place, which minimises user-
interface mechanisms, fundamentally be-
cause most work is done in the users’ pri-
vate spaces; (3) different-time/same-place,
where few systems can be placed, minimises
information sharing and interaction control,
emphasising single-user interface aspects of

1

paa
Second International Workshop on Groupware, CRIWG '96. Puerto Varas, Chile, September, 1996.

interactions; and (4) same-time/different-
place, which requires full group interaction
support.

In same-time/different-place systems, in-
formation sharing is essential to preserve
shared context between users that are not
face-to-face; interaction control is essential to
manage interventions by users that are simul-
taneously using the system; user-interface
is essential to preserve the degree of co-
presence of cooperative work. Facing this
scenario, we focus in this paper on same-
time/different-place support to group inter-
action.

This paper describes user-interface sup-
port to group interaction addressing the
above issues. The system is based on a
small set of graphical objects that ease the
design of complex group interaction pro-
cesses by decomposing and structuring in-
formation sharing and interaction control.
Furthermore, the user-interface support de-
livers cues on users’ activities and system
operations, enhancing users’ awareness of
cooperative processes. The user-interface
support was used to implement a same-
time/different-place tool that runs group de-
cision sessions structured according to sev-
eral decision techniques developed in the so-
cial sciences field, such as Nominal Group
Technique and Brainstorming [3, 2]1.

The paper is structured in the following
way. We start describing the spatial model of
the supported user-interfaces. Next section
describes the graphical objects which medi-
ate and structure users’ interactions. Then,
details on communication services required
by the user-interface component are given.
Examples of implementation of group inter-
action services using the user-interface sup-
port are also given. Finally, we give pointers
to related works and present some conclu-
sions.

1An implementation of the SISCO model [4] is also
envisaged for the future.

2 Spatial model

Public spacePrivate space

System space

Abstract
Communication
Service

WYGIWIG

Figure 1: Spatial model

The spatial model describes properties of ob-
jects which appear in users’ displays. The
model is illustrated in Figure 1 and consists
of private, public and system spaces. The pri-
vate space is dedicated to support individual
activities while the public space is dedicated
to support group activities. The public space
provides a common view to all users, imple-
menting a WYGIWIG (What You Get Is What
I Get) semantics [15]. This semantics ensures
that, although many temporary inconsisten-
cies arise in the public space (due to com-
munication delays in the updates), the infor-
mation that users get from the public space
is common2. The system space is defined to
provide continuity and allow transfer of ob-
jects between spaces. Objects may be moved
across spaces (depending on the application
semantics), changing their properties accord-
ingly. The model provides one system space
to each user with, at least, one private and
one public space. Therefore, for n users there
are n system spaces, n or more private spaces
and 1 or more public spaces. Each space has
the following properties:

� System space. Contains at least one pri-
vate space and one public space. Allows
to transfer objects between spaces and
ensures that properties of moved objects
change according to the spaces where
they move to.

� Private space. Contains private objects,
accessible to one single user.

2WYGIWIG relaxes the WYSIWIS (What You See Is
What I See) semantics in the time domain.

2

� Public space. Contains public objects, ac-
cessible to all users according to the WY-
GIWIG semantics. This functionality is
accomplished by replicating objects and
broadcasting local changes to all repli-
cas.

The communication facilities required by
the properties of the public space are aggre-
gated in what is called “Abstract Communi-
cation Service”. The Abstract Communica-
tion Service is described later.

3 Objects in spaces

There are four types of objects in spaces:
Items, Assistants, Links and Awareness.

Items Items are repositories of “concrete”
and durable information that one finds in
group interactions: issues, positions, state-
ments, etc. When placed in public spaces,
Items share data between users. In private
spaces, Items allow individual data creation
and modification. An Item is assembled from
storage (currently of text type), representation
(icon and/or label) and presentation compo-
nents. The presentation consists of a small
window which displays the contents of stor-
age. The representation is always visible on the
space. To preserve display space, the presen-
tation may not be visible. Users can apply the
following direct actions on Items: open and
close presentation (mouse “click” on the rep-
resentation), edit storage (character input on
presentation), move Item (mouse “drag”) and
delete Item (menu driven).

Public Items acquire one more component:
the protocol. The protocol specifies how repli-
cated storage, representation and presentation
are managed. Prior to any data modification,
the Item checks the protocol state and executes
any required operations. For instance, the
locking protocol allows one single user – the
locker – to execute actions on Item and denies
any actions to other users. Figure 2 illustrates

the locking protocol for the case where USER
1 has the lock which is requested by USER 2
to update the storage3.

Request

Accept

Update
storage

(LOCK)

(LOCK)

USER 1 USER 2 USER 3 USER 4

(UNLOCK)

Figure 2: Locking protocol

Assistants Assistants are similar to Items
but dedicated to represent and manage “in-
tangible” and transient information found in
group interactions: expression of ideas, com-
ments, arguments, etc. Like Items, Assis-
tants have storage, representation and presenta-
tion components and support the same user
actions. Unlike Items, the presentation com-
ponent of Assistants is intended to focus of
the interaction process, i.e. it is the mecha-
nism available in the system to communicate
information and establish interdependence.

Request

Accept

Update
storage

(FLOOR)

USER 1 USER 2 USER 3MODERATOR

Figure 3: Conference protocol

Public Assistants also have protocol compo-
nents. These protocols have a different nature
from the Items’ protocols. They are dedicated
to control interactions between users. For in-
stance, the conference protocol manages the
floor (access to the communication medium),
granted by a moderator which circulates ac-
cess between all users. The conference proto-
col is illustrated in Figure 3 for the case where
USER 1 requests the floor.

3USER 1 unlocks the Item by closing its presentation.

3

Links Meaning Functionality
public Item ! public Item Structure data Connect Items
private Item ! private Item
private Item ! public Assistant Expose private information Copy storage to Assistant.

Open Assistant’s presentation
public Item ! private Assistant Acquire public information Copy storage to Assistant.

Open Assistant’s presentation
private Assistant! public Item Generate public information Move storage to Item
public Assistant! private Item Preserve public sentence Copy storage to Item
private Assistant! private space private Assistant ! private Item Create Item
public Assistant! private Assistant public Assistant ! private Item Copy storage to Assistant.

! private Assistant Open Assistant’s presentation
private Assistant! public Assistant private Assistant ! public Item Move storage to Assistant.

! public Assistant Open Assistant’s presentation

Table 1: Link actions

Links Links extend the number of actions
supported by the user-interface system, al-
lowing the association of two objects to one
single action. Links can be established be-
tween two Items (Item $ Item), or one As-
sistant and one Item (Assistant $ Item). In
the fist case, Links are established with the
purpose of structuring data in spaces. In the
second case, Links allow to structure users’
interactions.

The Link Assistant $ Item operates in the
following two steps: (1) acquires data from
the origin object; (2) transfers data to the des-
tination object. After these two steps, the
Link has accomplished its task and vanishes.
Note that all operations on public objects,
including data acquisition and transfer, are
ruled by their protocol components. Further-
more, since Items and Assistants can reside
in private or public spaces, we can identify
two interaction patterns supported by Links,
which may emerge individually or coexist:

� private$ public
Information exchange between users’
private and public domains.

� durable$ transient
Information exchange between the
durable and transient contexts.

The several Links supported by the system
are presented in Table 1.

Awareness Awareness objects provide gra-
phical cues on users’ activities and system op-
erations. These elements are animated icons
that appear and disappear according to the
conditions they are associated to. Awareness
is always associated to one Item or Assistant,
appearing close to the element. The follow-
ing awareness information is provided:

� Consistency awareness. Informs on the
state of the protocol which manages repli-
cated data (therefore this object is as-
sociated to Items only). Figure 4 illus-
trates this functionality for the locking
protocol4.

Request

Accept

Update
storage

(LOCK)

(LOCK)

USER 1 USER 2 USER 3 USER 4

(UNLOCK)

Figure 4: Consistency awareness

� Interaction awareness. Provides feedback
on the state of the interaction control pro-

4Black icons represent users’ own actions and blank
icons represent other users’ actions. The pointing hand
represents a request, the thumb-up hand represents an
acceptance and the open hand represents ownership.

4

tocol (associated with Assistants only).

� Identity awareness. Notifies the identity
of the user that operated an Item or As-
sistant.

� Time-elastic awareness. Provides informa-
tion on the functioning of the WYGIWIG
semantics, notifying when all users ef-
fectively perceive the information deliv-
ered to the public space. This feedback is
necessary for communications in large-
scale networks, where users loose the
notion of real-time, since messages may
take an arbitrary time to be delivered [1].
Figure 5 illustrates this functionality.

Update

USER 1 USER 2 USER 3 USER 4

Reply

Reply

Reply

Figure 5: Time-elastic awareness

� Disruption awareness. Informs users
when the WYGIWIG semantics cannot
be maintained, i.e. broadcast messages
do not reach all replicas, due to possible
network partitions. Figure 6 illustrates
this functionality.

Update

USER 1 USER 2 USER 3 USER 4

Disruption

Figure 6: Disruption awareness

� Application dependent. Awareness objects
can be programmed to provide applica-

tion dependent information.

4 Abstract Communication Ser-
vice

Public spaces require network communi-
cation in order to broadcast local object
changes to all replicas. Furthermore, pro-
tocols also require communication between
replicas. The Abstract Communication Ser-
vice specifies messages that are communi-
cated between replicas. The Abstract Com-
munication Service does not make a distinc-
tion between Items, Assistants, Links and
Awareness objects. It only recognises ob-
ject names and positions. Messages ex-
changed through the Abstract Communi-
cation Service have the following format:
([addresses] [message]).

The field [addresses] specifies the ori-
gin and destination of messages. Possible
addresses are show in Table 2.

user1.user2 To user2
user.ALL To all users
user1.NOT.user2 To all except user2
SYSTEM.user From system

Table 2: Origin and destination of messages

Table 3 presents the messages defined by
the Abstract Communication Service.

5 Examples

We present three common group interaction
services experimented with the described
user-interface system. The objective is to clar-
ify how Items, Assistants, Links and Aware-
ness are combined together to support group
interaction.

5.1 Talk service

The basic objective of a talk service is to al-
low users to freely expose written statements.

5

[Create|Move|Delete object [position]] Create, move or delete object
Update object "text" Modify storage
Open object Open presentation
[Link|Unlink] object1 object2 Link/unlink two objects
[Request|Accept] object Used by the locking and conference protocols
Done object user Required by time-elastic awareness
Disruption [user*] Required by disruption awareness

Table 3: Messages defined by the Abstract Communication Service

This is accomplished with private and public
Assistants, as illustrated in Figure 7.

Public space
USER 1 (private space)

USER 2 (private space)

My comment
My comment

Other comment

User 1

Figure 7: Talk service

� Front-face. Resides in the private space
and allows users to write statements.

� Side-face. Resides in the public space and
is the place where statements from users
are displayed (through the presentation).
To expose a comment, a user Links the
front-face to the side-face.

An Awareness object is shown near the
side-face with the identification of who ex-
posed the statement. The protocol used by
side-face is open-floor, which allows free ac-
cess to the communication medium.

5.2 Joint editing service

The joint editing service allows several users
to jointly create and structure a document.
This service is illustrated in Figure 8. The

joint editing service is based on dividing the
document in parts (Items) and allowing indi-
vidual work on each part.

Shared space

USER 1 (private space)

USER 2 (private space)

Change text

...

....

My text

User 1

Figure 8: Joint editing service

Two types of Assistants coordinate user in-
terventions in document parts:

� Vertical-arrow. Creates new document
parts, when Linked to the private space
(see example of USER 2 in Figure 8).
New parts can be moved to the public
space after being edited.

� Horizontal-arrow. Coordinates modifi-
cations in document parts. First, the
user Links a document part to horizontal-
arrow. The text is transferred to the As-
sistant and the presentation is opened in
order to allow editing. Finally, the user
Links the horizontal-arrow to the docu-
ment part in public space (see example
of USER 1 in Figure 8). This Link trans-
fers the text, with modifications, back to

6

1

2

3

Public space

Recording

Time-elastic
awarenessRecording

Playback and
notification

USER 1

USER 2
USER 3

USER 4
t

Broadcast

2 Broadcast

1

2

3

Playback and notification
from all users

Figure 9: Shared context

the document.

Document parts use the locking protocol in
order to avoid simultaneous modifications of
their contents. This means that Links to a
locked document part block while its con-
tents is being modified. Awareness objects
identify the users locking document parts.

5.3 Telepointer service

Telepointers are shared graphical entities de-
signed to be manipulated by one partici-
pant at a time in order to point or get at-
tention to a specific area or item of the pub-
lic space [18]. The basic problem concern-
ing the telepointer implementation is the lost
shared context and consequent ambiguity in
same-time/different-place settings, particu-
larly with large-scale networks. To preserve
the notion of movement, multiple messages
have to be broadcasted to replicas. However,
large scale networks are characterised by low
throughput and long communication delays
which turns the approach impracticable. We
derive the telepointer from Item and imple-
ment the following functionality (see Figure
9).

1. The manipulation of the telepointer is
governed by the locking protocol.

2. We avoid flooding the network with too
many messages by recording telepointer

movements. A recorded movement is
broadcast (Update message) each time
the locker stops moving the telepointer.

3. When each replica receives a recording,
it executes a playback, i.e. replays the
movement, and broadcasts a Done mes-
sage notifying that the operation has
been accomplished.

4. We use time-elastic awareness to in-
form users on the playback progress.
Time-elastic awareness allows to pre-
serve shared context independently of
network delays.

After recording a gesture, the user must
refrain from moving the telepointer until
knowing that all participants play the ges-
ture back. Only after the meter icon goes full,
the user is sure that all participants have seen
the telepointer movement.

Playback not
completed

1

Unreacheable
users 2

3 Wait for
reacheable
users only

Figure 10: Loss of context

If one or more users become unreach-
able, due to a network partition, our strat-
egy is to proceed with telepointer usage but
inform all users about the loss of context.

7

The Abstract Communication Service noti-
fies all telepointer’s replicas, informing that
is unable to communicate with some users
(Disruption message). The notification
identifies which users are unreachable. Then,
each replica follows two possible strategies:
(1) if a replica can reach the replica owning
the lock, it proceeds with the locking proto-
col and preserves telepointer semantics; (2)
if a replica cannot reach the replica owning
the lock, it cancels the locking protocol in or-
der to avoid blocking. A new locking pro-
tocol is started with the reachable users (if
any) and a temporary designated locker. This
approach guarantees that the telepointer se-
mantics can be preserved but restricted to
reachable users5. When users become reach-
able again, the telepointer eliminates the tem-
porary lock and resumes the original lock-
ing protocol. users are aware of the differ-
ent strategies and events by seeing different
shadowed hands delivered by the Awareness
object. This is shown in Figures 6 and 10.

6 Implementation

The user-interface system is implemented
with the extension of a single-user graph
editor developed in C++ and running on X
Windows Systems/Unix workstations. Each
workstation runs an instance of the editor.
Shared and private spaces are implemented
as rectangular areas of the graph editor.
Items, Assistants, Links and Awareness are
implemented with C++ classes derived from
two basic classes: nodes and links. Two al-
ternative communication systems were used
to implement the Abstract Communication
Service: (1) Mbus [11], a socket based com-
munication service which provides message
broadcast; and (2) NavTech/NavCoop [9], a
group management platform which provides
wide-area group communication protocols,
replication management and network avail-
ability services.

5Unreachable users, as expected, are excluded from
the time-elastic awareness mechanism.

7 Related work

A set of recent works can be related with
some aspects of the user-interface system pre-
sented in this paper:

� GroupDesk. Is an environment for the co-
ordination of cooperative document pro-
duction that addresses the awareness re-
quirement [10]. The solution is based on
the distribution of object manipulation
events and user registering of interests
on particular events.

� CoSARA. Is a platform to specify and
prototype multiuser interactions [20].
The focus is on data sharing (it imple-
ments dependency detection and lock-
ing protocols). The system also pro-
vides activity monitoring. The inter-
action mechanisms are defined at pro-
gramming level, requiring knowledge of
intricate specification models. CoSARA
does not address coordination at user-
interface level.

� MEAD. Is a system that supports the cre-
ation of multiuser interfaces [6]. The ba-
sic system component of MEAD is the
User Display Agent which manages in-
formation display and multiple user in-
teractions at the graphical object level.
MEAD does not supply standard group
interaction mechanisms, as the ones de-
fined by Links.

� DOLPHIN. Is a groupware applica-
tion that provides computer support to
group meetings [19]. It defines pri-
vate and shared spaces. The shared
space supports whiteboard usage. DOL-
PHIN provides hypermedia objects and
accepts pen-based inputs and gestures.
Object transfers between public and pri-
vate spaces use cut/paste operations.
DOLPHIN relies on a centralised server
for concurrency management, limited to
the locking protocol. In remote coop-
erations, awareness is only supported

8

through dedicated audio/video chan-
nels.

� Contact. Is a system to support cooper-
ative writing [12]. Basically, this system
coordinates user interventions in docu-
ment parts. Editing is done with stan-
dard tools. The system creates Watch
objects that inspect users’ (Unix) com-
mands on document parts. Users can
infer other users’ operations through
Watch objects. The user-interface of
Contact is based on a Web browser.

� ESC. Is a text-based environment that
demonstrates the use of innovative com-
munication channels for cooperation
[14]. In some sense, the Assistants’ func-
tionalities are comparable to ESC’s chan-
nel functionalities. For instance, pos-
sible communication channels include
global, public, group and private clip-
boards.

� DIVE/CyCo. Are, respectively, three and
two dimensional systems that support
cooperative interactions [5]. These sys-
tems use a spatial model that defines lev-
els of awareness based on spatial met-
rics (orientation and distance). Levels
of awareness are used to fire different
events. For instance, a far object is able
to notice a shareable piece of text; becom-
ing closer, the object is able to read text;
even closer the object may be able to co-
operatively manipulate text. Interaction
is defined by moving objects.

� COLA. Is a system to support cooper-
ative work [21]. COLA is based on
a model which defines activities (coop-
eration), roles (interaction control) and
events (awareness). The objectives pre-
sented in this paper are the same of
COLA: support for cooperation, control
and awareness. However, COLA does
not address the user-interface level.

8 Conclusions

In this paper we present a system which
supports the construction of user-interfaces
for group interaction. The system addresses
three common functionalities of this kind of
applications: information sharing, interac-
tion control and user-interface specific as-
pects. The proposed model is based on four
object types: Items, which manage shared
data; Assistants, which handle communica-
tion and coordination; Links, which are ded-
icated to structure complex group interac-
tions; and Awareness objects, dedicated to
deliver cues on users’ activities and system
operations. The system is well adapted to
same-time/different-place interactions due
to a careful consideration for the require-
ments of this kind of interactions. Some ex-
amples of group interaction mechanisms im-
plemented with the system were presented,
highlighting the flexible and structure abili-
ties of the defined objects.

References

[1] P. Antunes, F. Cosquer, N. Guimaraes, and
P. Verissimo. Adaptive group awareness for
synchronous cooperation over large-scale
networks. Submitted for publication., 1996.

[2] P. Antunes and N. Guimaraes. NGTool - ex-
ploring mechanisms of support to interac-
tivity in the group process. In First CYTED-
RITOS International Workshop on Groupware
CRIWG ’95, Lisboa, Portugal, September
1995. CYTED-RITOS.

[3] P. Antunes and N. Guimaraes. Structur-
ing elements for group interaction. In Sec-
ond Conference on Concurrent Engineering, Re-
search and Applications (CE95), Washington,
DC, August 1995. Concurrent Technologies
Corporation.

[4] G. Bellassai, M. Borges, D. Fuller, and J. Pino.
SISCO: A tool to improve meetings produc-
tivity. In First CYTED-RITOS International
Workshop on Groupware CRIWG ’95, Lisboa,
Portugal, September 1995. CYTED-RITOS.

[5] S. Benford. A spatial model of interaction
in large virtual environments. In Proceedings

9

of the Third European Conference on Computer-
Supported Cooperative Work – ECSCW ’93, Mi-
lan, September 1993.

[6] R. Bentley, T. Rodden, P. Sawyer, and I. Som-
merville. Architectural support for cooper-
ative multiuser interfaces. IEEE Computer,
May 1994.

[7] G. Blair and R. Rodden. The opportunities
and challenges of CSCW. Journal of Brazilian
Computer Society, 1(1), July 1994.

[8] R. Butler. Designing Organizations, chapter
Requisite Decision-Making Capacity. Rout-
ledge, 1991.

[9] F. Cosquer, L. Rodrigues, and P. Verissimo.
Using tailored failure suspectors to support
distributed cooperative applications. In Pro-
ceedings of the 7th International Conference on
Parallel and Distributed Computing and Sys-
tems, Washington, DC, October 1995.

[10] L. Fuchs, U. Pankoke-Babatz, and W. Prinz.
Supporting cooperative awareness with lo-
cal event mechanisms: The groupdesk sys-
tem. In Proceedings of the Fourth European
Conference on Computer-Supported Cooperative
Work – ECSCW ’95, Stockholm, Sweden,
September 1995.

[11] S. Kaplan, A. Carrol, and K. MacGre-
gor. Supporting collaborative processes with
ConversationBuilder. In Conference on Orga-
nizational Computing Systems, pages 69–79,
Atlanta, Georgia, November 1991.

[12] A. Kirby and T. Rodden. Contact: Support
for distributed cooperative writing. In Pro-
ceedings of the Fourth European Conference on
Computer-Supported Cooperative Work – EC-
SCW ’95, Stockholm, Sweden, September
1995.

[13] T. Malone and K. Crowston. The interdis-
ciplinary study of coordination. ACM Com-
puting Surveys, 26(1), March 1994.

[14] D. Patel and S. Kalter. Low overhead, loosely
coupled communication channels in collab-
oration. In Proceedings of the Third European
Conference on Computer-Supported Cooperative
Work – ECSCW ’93, Milan, September 1993.

[15] F. Penz, P. Antunes, and M. Fonseca. Feed-
back in computer supported cooperation
systems: Example of the user interface de-
sign for a talk-like tool. In 12th Schaerding

International Workshop, The Design of Com-
puter Supported Cooperative Work and Group-
ware Systems, Schaerding, Austria, June 1993.
Elsevier Science.

[16] T. Rodden. A survey of cscw systems. Inter-
acting With Computers, 3(3):319–353, 1991.

[17] T. Rodden and G. Blair. CSCW and dis-
tributed systems: the problem of control. In
Proceedings of the Second European Conference
on Computer Supported Cooperative Work – EC-
SCW ’91, Amsterdam, 1991.

[18] S. Sarin and I. Greif. Computer-based real-
time conferencing systems. IEEE Computer,
18(10), October 1985.

[19] N. Streitz, J. Geissler, J. Haake, and
J. Hol. DOLPHIN: Integrated meeting sup-
port across local and remote desktop en-
vironments and liveboards. In ACM 1994
Conference on Computer Supported Cooperative
Work CSCW ’94, Chapel Hill, North Car-
olina, October 1994.

[20] I. Tou, S. Berson, G. Estrin, Y. Eterovic, and
E. Wu. Prototyping synchronous group ap-
plications. IEEE Computer, May 1994.

[21] J. Trevor, T. Rodden, and G. Blair. COLA:
A lightweight platform for CSCW. In Pro-
ceedings of the Third European Conference on
Computer-Supported Cooperative Work – EC-
SCW ’93, Milan, September 1993.

10

