
Adaptive Synchronous Cooperation
over Large Scale Networks

�

François J.N. Cosquer Pedro Antunes
INESC

�
INESC-IST

�

Nuno Guimarães Paulo Verı́ssimo
INESC-IST INESC-IST

This paper presents an approach to effective synchronous work support in the context
of large scale interconnected networks such as the Internet. We show how the current
technology limits influence synchronous cooperation. Distance-Adaptation is proposed to
tackle problems linked with high variance in communication delays and partial unreachability
between cooperating users. Low level support information and new feedback techniques
are combined to improve group awareness in synchronous large scale CSCW tools and
applications. We illustrate our claim using three cases of synchronous work mechanisms.
The objective is to contribute to the development of more robust and adaptative cooperative
applications.

Introduction

The rapid growth and availability of interconnected networked infrastructures such
as the Internet [3] have raised dramatically users expectations. Amongst the most
promising applications are those oriented towards multi-user interaction and col-
laboration. Papers on synchronous work have shown the importance and necessity

�
This work was partially supported by the CEC, through Esprit Project BR 6360 (Broadcast).�
Instituto de Engenharia de Sistemas e Computadores, R. Alves Redol, 9 - 6 � - 1000 Lisboa -

Portugal, Tel.+351-1-310 0000, Fax: +351-1-52 58 43, e-mail: � fjnc,paa,nmg,pjv � @inesc.pt�
Instituto Superior Técnico - Technical University of Lisbon

of interactive applications such as talks, shared editing, presentation tools and tele-
conferencing [3,3]. Furthermore, applications classified as asynchronous often need
seamless transition from asynchronous to synchronous phases [3] in order to achieve
progress.

Supporting synchronous work or synchronous interaction over today’s computer
networks is a difficult task. Distributed synchronized applications are known to
have the most stringent requirements [3], the main reason being that they rely
heavily on the communication subsystem. This raises complex problems since in
large scale interconnected networks, communication suffers from high variance and
unpredictable transmission delays. Furthermore, such environments are also more
likely to exhibit partial unreachability between users, known as partition failures [3].
This means that current mechanisms and implementation techniques are partially
ill-suited to provide satisfactory functionality to the users in today’s large scale
networked environments.

Having surveyed a number of synchronous groupware applications and platforms
[3], we found that little attention has been paid to scaling and end-to-end reliability
issues. This is clearly not acceptable if synchronized cooperation applications are
to become widely used over large scale networks.

Providing solutions to the design and implementation of large scale distributed
computing systems (LSDCS) is the main objective of the European partners involved
in the Broadcast project [3]. The work presented here represents the results of the
combined efforts of two research groups at INESC involved in this project. One
group has focused on the systems aspects of cooperation while the other emphasized
the top-down approach to organizational computing. The common goal is to re-
search and develop new CSCW techniques taking into account both the underlying
technological restrictions and awareness of organizational and group work.

We have identified at least three possible types of approach to the problematic
of interaction in LSDCS. The first approach advocates the use of asynchronous
interaction between users [3] and avoids the inherent inefficiency of communication
and distributed computations in large scale networks. A comparable approach by
[3] showed that progress could be achieved using semi-synchronous interaction
during collaborative editing sessions. However, there is always a need for intensive
interaction such as, for example, the start or the end of a cooperative session. For
this case, other facilities have to be provided.

The second type of approach is more dedicated to system support for continuous
media. Correct handling and use of continuous data requires a complete end-to-end
approach as both communication (transmission between sites) and scheduling (at the
local site) guarantees are needed [3,3]. This dynamic adjustment of quality of service
(QoS) enables some of the requirements of distributed multimedia applications to
be met. However, it requires having (partial) control over network protocols and
operating system scheduling policies, which we might not have in an Internet-like
environment. Furthermore, it does not provide solutions for cases of unreachability
betweens nodes.

The third relevant approach, which apparently has no direct link with cooperation

and LSDCS, is to be found in presentation degradation techniques. These techniques
rely on time-elastic objects [3] which can self-adjust the quality of their presentation
according to the amount of system resources available. This best-effort approach
does not depend on the underlying implementation platform. Furthermore, the
model allows the application to specify the type of degradation to apply.

In order to tackle problems associated with synchronous cooperation in LSDCS,
we have combined concepts of end-to-end requirements satisfaction with presenta-
tion degradation concerns. We have assumed minimal control over the operating
system and the transport layer, as it is the case with environment offered by the
Internet infrastructure. We have also tried to follow the system design argument as
exposed in [3] in other words we have tried to avoid duplicating support at different
layers of the system.

We have extended the concept of automatic smooth presentation to what we
call the “distance-adaptation” paradigm. The underlying support allows end-to-end
connectivity information to be tailored to the application’s needs. Collaborating
users can perceive the “distance” between them. Combined with new feedback
techniques, this changes group collaboration awareness dramatically . Furthermore,
when lower level layers cannot decide on system state, feedback is immediately
provided to users according to pre-defined policies (application dependent). This is
an innovative aspect: because users are kept informed and no longer suffer ad-hoc
system decisions, they can decide on whether to adapt to the current state, or proceed
indifferently. This offers a high level of flexibility and hence satisfies one of the
most important recommendations for the system design of cooperative tools.

The “distance-adaptation” paradigm is described in Section 2. We also briefly
explains how a group-based communication subsystem can be extended to provide
necessary support. We illustrate how this support can be used together with new
adaptative feedback techniques in Section 3. It is followed in Section 4 by a
discussion on the results and possible future work. Conclusions are given in Section
5.

The “Distance-Adaptation” paradigm

We explain the motivations behind the “distance-adaptation” paradigm followed by
an overview of the services that are provided. The organization of the underlying
system support is also briefly described.

Design Issues

The “distance-adaptation” paradigm integrates adaptation at all levels of the system.
This means, we should be able to specify and detect the underlying system state.
In the context of synchronous applications we are mainly concerned with the level
of connectivity between users. Each participant can think of being separated from
the others by a certain “distance”. Furthermore, we need to present this information

?
A Node N3 is unreachable
	

N3N1 N2

 N3 has crashed

N1 N2 N3

 Slow link and/or N3 is slow

N3N2N1

 Physical Network Partition

N1 N2 N3

Figure 1: Unreachability: The Impossibility Result

dynamically to the cooperating users in a meaningful way. This should allow
them to make decision, i.e. to adapt, based on this “distance” information thus the
“distance-adaptation” paradigm.

Unfortunately, in asynchronous message-passing computing environments, it is
impossible to differentiate a slow node or link, from a crashed node or broken link
[3]. The situation is depicted in Figure 1. This problem of not always knowing the
system’s state has been a major concern of the “distance-adaptation” paradigm. This
constitutes one its innovative aspect and has consequences on the degradation model.
The “distance” information is used whenever available to reflect the current system
state. However, dedicated service is provided during periods of unreachability
between some nodes of the system.

These requirements led us to adopt a two-level approach. We first detect degra-
dation and pass the information to the upper layers. This is what we call the Level
of Service (LoS)1. If after some pre-defined time the situation is still unknown, we
adopt a strategy on how to proceed with the synchronous cooperation. This is the
partition mode what is usually known as partition processing strategy. It is pro-
grammed as part of the application. This includes defining policies for reconnection
once the underlying support is able to give distance measurements again. Further-
more, for extreme cases, i.e when no improvement is detected within an application
meaningful delay, we offer users the possibility to force decision to the system. A
summary of each service and its parameters is given below.

(1) Level of Service (LoS): the following parameters are programmed by the
applications designer.

 Distance measuring function: used to define the current connectivity
state i.e the “distance”.

 Unreliable threshold: this defines the output below which the distance
is considered too big for maintaining an interactive session.

 Unreachable threshold: this defines the output below which the dis-
tance is such that it should correspond either to a partition or a crash
failure.

1We avoid here overloading the term Quality of Service (QoS) usually used to describe adaptability
to the network and computing resources through reservation and scheduling mechanisms.

(2) Partition mode: This provides functionality as to maintain service during
unreachability periods and smooth reconnection on repair. The following
parameters are also application dependent.

� Splitting and merging rules: once some node are declared unreach-
able (or reachable again), we need agreement on the (un)reachability
status resulting in non-intersecting partitions (or rejoining).

� Partition identification: this allows to specify how to assign partition
types (e.g. main or secondary). Runtime partition type information
can be used by the application to discriminate the type of synchronous
operations allowed.

� User-level crash decision: this feature is useful when the application
has been running in partition mode for a long period due to unre-
solved unreachability cases. By forcing a crash to be detected by the
system the application can then run again with a restricted number of
participants but without the restrictions of the partition mode.

Before illustrating the benefits of the “distance-paradigm” in the context of syn-
chronous cooperation, we now briefly describe the implementation platform.

Architectural Decisions

Research in distributed systems has led to the development of technologies which
also have their role to play in groupware system support: replication management al-
gorithms, group communication protocols and group management tools [3]. Group
tools have shown their usefulness in many projects and are considered to yield sim-
pler and more efficient implementations of a large class of distributed applications
[3].

By providing facilities for the management of replication and cooperation ac-
tivities, groups have the potential to ease the structuring of a number of future
distributed systems. Early experiments with groupware applications have shown
that a key issue is group activities management. This suggests a beneficial relation-
ship between what may be provided by a group-oriented system and the groupware
applications requirements. This has been confirmed by projects like COLA[3] and
Duplex [3] which have based their implementation on a group-oriented platform.

Group-oriented systems can be viewed as providing two key services. First, the
membership service which maintain a consistent view of the nodes involved in the
distributed cooperation. It is based on a failure suspector component which provides
information of basic connectivity situation. Second, the multicast service provides
various semantics of multicast communication, such as for example causal and total
ordering, for information dissemination within a group.

Building support for the “distance-adaptation” paradigm services requires mod-
ifying our group-oriented platform. We need to integrate requirements specific to
the application domain into the system. The various modifications are listed below:

 Failure Performability

Connectivity

Application
Dependant
Parameters

Participant

User
Decision

Partition

Group-oriented Platform

SuspectorMembership

Level of Service

Distance Paradigm. Support Layer

Partition Processing
Support Support

"Depends on"

Key

Figure 2: Group-based “distance-adaptation” support

� Extend Failure Suspector functionality; by adding application-defined per-
formability tests to the mechanisms normally used to suspect failure. This
maintains connectivity metrics to be used by higher layers like the Level of
Service. Furthermore, the decision on unreachability is no longer a system
parameter but the unreachable threshold parameter.

� Extend Membership Services: The group-based communication subsystem
provides a strong-partial membership service [3]. Informally, this means that
at any time it is guaranteed that concurrent views are non-intersecting. This
property is useful for developing our partition functionality of splitting and
merging rules. A new feature is the user-level crash decision facility. This can
be implemented using an upcall mechanism from the membership component.

� Customize Membership View; by adding extra partition status information to
the group membership view. This allows partitions identification.

A simplified view of the group-based support is given in Figure 2. It shows the two
main services offered by the “distance-adaptation” paradigm and their integration
with lower level layers. A more detailed description can be found in [3].

The Feedback during Synchronous Work Sessions

An important part of the validation path of the “distance-adaptation” paradigm was
to test its benefits from the end-users point of view. The major concern is to provide
sufficient awareness so that users can avoid disruptive effects on work sessions. The
answer is based on several already tested solutions that rely on the feedback delivered
by the infrastructure, as a counterpart to the lack of feedback delivered by end-users

[3,3]. To illustrate our claim we selected three types of mechanisms frequently used
during synchronous work sessions: group monitoring, gesture support (telepointer)
and a generic concurrency control mechanism.

Group Monitoring and “Distance-Adaptation”

Group monitoring refers to the component used in most synchronous applications
to monitor the audience attendance. It corresponds to what is referred to as shared
feedback in [3]. Usually, it uses small pictures or even video frames of participants.
Our objective is to integrate the group monitoring information with the “distance-
adaptation” paradigm. Our experiences and knowledge of existing systems led us
to the following proposal, illustrated in Figure 3.

paa lerfjnc pjvlmcnmg

Reliable
participant

app

55%

Unreacheable
participant

jmm

Unreliable
participant Distance

pjv History

Figure 3: Group Monitoring

All participants are identified by small pictures and user names. Participants are
divided in two groups: reliable and unreliable ones. The reliable participants are
the ones able to provide feedback with delays below the pre-defined unreliability
threshold. Unreliable participants are the ones unable to meet this threshold. A
second threshold of delayed feedback is established in order to identify participants
that are presumably unreachable.

The two thresholds clearly establish different effectiveness degrees for group
synchronous interactions. A user will find difficulties in interacting synchronously
with unreliable participants, but an estimate of the delayed feedback avoids the
immediate rejection of synchronous work. Furthermore, when effectiveness is
paramount, the user can request unreliable participants to leave the group. As for
the unreachable participants, the long feedback delays do not allow for any practical
synchronous interactions and therefore the application should smoothly switch to
partition mode without user intervention.

The UI analogy for the group monitoring mechanism is inspired by an hill,
where people go up and down but always getting more distant from the viewer.
The distance between the viewer and the other participants is represented by a line
going from left to right. The distance is measured vertically, i.e. lower participants

have small feedback delays and higher participants have large feedback delays.
Furthermore, participants are aligned by increasing magnitude from left to right.
Unreliable participants, which are displayed to the right of the sliding line, are also
aligned by increasing magnitude but the measurement is displayed inverted, i.e.
with a line that is decreasing for increasing distances. This design option also has
the benefit of saving display space.

A percentage value is also displayed on the top left corner of the UI. This is
intended to represent a global distance measurement using a single value and, there-
fore, is a function of the feedback delays of both reliable and unreliable participants.
The unreachable participants are excluded from the measurement since they are
automatically excluded from synchronous interactions.

The overall function is specified by the application developer as part of the LoS
mechanism. Several strategies can then be adopted:

 Show the worst case feedback delay - This allows the user to perceive the worst
case scenario. On the other hand, frequent changes of this value generate an
overemphasized impression of feedback delays.

 Show the average value - Does not reflect the conditions of wide area com-
munications when several participants are local.

 Show the average value of the participants with longer feedback delays - This
is a compromise between the two cases above: it reflects the worst case but
avoids frequent changes.

Finally, a window with the historical data of the distance for a participant can be
displayed by clicking on the icon representing her/him.

We believe that the level of information provided by the mechanism described
above is sufficient to enable end-users to confront the communications performance
with their requirements over working sessions. In situations like network partition,
are promptly detected and participants who are available for proceeding with syn-
chronous operations are identified. The selection by the application designer of the
two feedback delay thresholds described above is of critical importance. Values
that are too low lead to a ripple phenomenon, which becomes excessively intrusive,
while too high values result in a less informative mechanism. This issue has to be
further studied.

Gesture Support Using Telepointers and “Distance-Adaptation”

Telepointers have been designed to be manipulated by one participant at a time in
order to point or get attention on a specific area or item of the shared workspace.
Telepointer facilities are usually provided by many synchronous CSCW tools. In
the example below we assume that the shared workspace only has one telepointer
for all the participants. The issue of how one user grabs the telepointer (access
control) will not be considered. We rather concentrate on the manipulation issues
which relate to the “distance-adaptation” criteria.

Shared space

Motion-stop

FeedbackMotion-
stop

Wait for
new feedback

Move anywayMove again

1

2

3

Feedback from
all members

Feedback not
completed

1

2
3

Sub-group
pointer

Motion-
replay

Motion-replay

Re-group and stay
in Motion-replay

Motion-replay

Motion-stop Motion-stop

Re-group and change
to Motion-replay

Re-group and stay
in Motion-stop

Merging

Gestures

Principle

Standard feedback Partition mode feedback

31 2

User 1

User 2
User 3

User 4
t

Figure 4: The Telepointing mechanism

The principles adopted for the telepointer are illustrated on the top part of Figure
4. To avoid flooding the network with too many messages, the telepointer uses
a "Motion-stop" mechanism: the telepointer movement is recorded until the user
stops; the recorded movement is then sent to the group. The Motion-stop is dis-
tributed to other participants using the reliable multicast primitives provided by the
underlying group support.

Each participant’s site, when receiving a Motion-stop will execute a "Motion-
replay", i.e. it will replay the movement, and broadcast the information that the
Motion-replay has been executed. A meter is displayed near the participant’s tele-
pointer after a Motion-stop or Motion-replay. The meter level will reflect the recep-
tion of feedback from the group participants. When feedback from all participants
is received, the meter is displayed full for a short period and then vanishes.

After a Motion-stop, the user should refrain from moving the telepointer until
knowing that all participants have had the gesture replayed (case middle left on
Figure 4). However, if the meter does not reach the top, due to one or several
participants being unreliable, the user can still move the telepointer (case middle
right on Figure 4). In this case, the system will automatically enter the partition
mode and generate a sub-group excluding the unreliable participants. The users
will be notified immediately, seeing a shadowed telepointer. Note that if excluded
participants have not crashed they also have created their sub-group and enter
partition mode.

The functionality of the telepointer is maintained in partition mode but the par-
ticipants are notified that not all original group members are participating. Further

information on sub-group membership is available through the group monitoring
mechanism described above. When in partition mode the telepointer manipulation
policies can use the partition identification information. This allows to decide what
happens in each type of partition. For example, one can defined rules such that there
is a unique main partition and possibility for many secondaries. The default policy
based on this information can allow each side to possess its own telepointer so as to
preserve animation during partition mode.

When the participants who were excluded from the main sub-group become
reliable again, the system will terminate the partition mode and merge. We sketch
below few cases where the owner of the telepointer in the main regain control on
the others on merging (see Figure 4 bottom).

(1) The telepointer is owned by a user in the main partition and the system decides
that it will continue to own it - The telepointer returns to its graphical aspect
and stays in location.

(2) The telepointer is not owned currently by the user - The telepointer changes
its graphical aspect. This concerns participants of both partition types. If a
telepointer had been moved in a secondary partition it moves (animation) to
the new owner’s location.

(3) The telepointer was owned by a user in a secondary partition and the system
will give to the owner in the main - The telepointer changes its aspect and
moves (animation) to the other participant’s telepointer location.

The functionality of the telepointer requires to be complemented with the group
monitoring mechanism. This is mostly due to the need to analyze the monitoring
information in the cases where the meter does not reach the top and a decision has to
be made about how to carry on synchronous task. Providing partition identification
type users can proceed, smoothly, in partition mode. One arguable design decision
was whether all participants should see the meter or not. Our decision was to show
the meter to all participants, such that everyone be aware of the delays in telepointer
gestures.

Concurrency control and “Distance-Adaptation”

Concurrency control concerns to the problem of having several users trying to ma-
nipulate a shared resource concurrently. We will not discuss the different policies
[3] but rather focus on expliciting and expressing generic concurrency control mech-
anisms and integrate them with the appropriate awareness of “distance-adaptation”.

The first design issue to consider is that the displaying of concurrency control
actions is kept separated from the graphical representation of the resource. Al-
though this decision may result in more complex UIs, when many resources have
to be displayed in a shared workspace, this decision allows for a generic solution
independent from the possible resource representations.

Request
denied

Request
accepted

RequestUnavailable

Available

Unavailable Split

Split

Requested
by other

Available

UnavailableReleased

Split

Deny Available Split Partition
mode

Request
denied

Request
accepted

Unavailable Unavailable

Split

Requested
by other

Unavailable

Passive participant

Requesting participant

Active participant

Split

Partition
mode

Partition
mode

Partition mode

Partition mode

Partition mode

Figure 5: Concurrency control

The basic concept is to use hands language code to represent control: the open
hand represents ownership; the pointing hand represents a request; the thumb up or
down represents acceptance and denial. Hands do also have colors: black means
"me", white means "other" and grey is a special color that means that the resource
is locked by more than one participant i.e. the resource is in partition mode. Note
that the convention is similar to the telepointer’s case described above.

Three types of participants are then discriminated: active (locking the resource),
requesting (to lock the resource) and passive (has interest in the resource but does
not lock or request it). From the above design decisions, it results that a white
pointing hand means that someone is requesting the resource, a black pointing hand
means that I am requesting the resource, and so on. These simple representations
are combined and sequenced in order to provide very expressive feedback on the
concurrency control actions that are performed over a particular resource. See Figure
5 for and illustration of the the different cases as seen by each type of participant.

The “Distance-Adaptation” case to consider here is the unreachability of one or
several users, detected by the system when a participant crosses the discriminated
threshold of feedback delay. In this case the system does an automatic split operation
into partition mode and eliminates the unreachable participants from the created sub-
group. See Figure 6 for an illustration of this procedure. Any user, active, requesting
or passive, or the system itself, can decide to terminate partition mode and merge,
i.e. request a single locker for the resource (we will not discuss here the problem

Too distantUnavailable

Available Too distant Partition
mode

Available

Unavailable

Merge Too distant

Partition
mode

Partition
mode

MergingSplitting

Partition
mode

Figure 6: Concurrency control - The Partition mode

of consistency). The Figure 6 also describes the possible situations that may arise
when merging. When a participant requests to merge but there are unreachable
participants, the operation is aborted.

A common concurrency control policy used in asynchronous work consists in
relaxing resource locking and allowing multiple modifiable copies of the resource.
Such characteristic can be incorporated in the proposed concurrency control mecha-
nism usinf the system support for the partition mode. This is illustrated in the dotted
examples of Figure 5. An active user can explicitly request to split into the partition
mode after receiving a request for locking. The requesting participant can also split
after receiving a denial for locking.

The description of the concurrency control mechanism has been overly simplified.
For example, the pictures do not describe the cases where unreachability follows
requests for locking. Also, several policies, which may be arguable, have been kept
out of the discussion. Another example, for simultaneous requests the system will
operate first come first serve. This case is not shown in the illustrations but the user
that does not get locking sees a denial followed by a request by other and accepted.

Discussion

Our first comments address the UI design of the techniques previously presented.
The overall objective is to provide good feedback to users over the actions that are
being executed during work sessions whether originated by the users themselves or
by the system. The pertinent question is if there is sufficient end-user acceptance of
the design options that were taken. In respect to this issue, we have inquired a small
set of users and found several issues which have not yet been handled satisfactorily:

� Group monitoring: the representations of the participants in work sessions
could be more expressive and, preferably, should display a live picture of
the persons. Furthermore, users expected that the UI specified for group
monitoring would also be used for managing the group composition. For
instance, to remove users from work sessions. The current group monitoring

mechanism was designed just to only provide feedback on group distance.
Our idea is that these services should be detached, since they have different
interaction and awareness requirements which must be fine tuned, but one
must then also think of the integration of the various solutions.

� Telepointer: an immediate question raised by users after analyzing the tele-
pointer specification, concerns what happens when a user does not wait enough
time after a Motion-stop such that feedback from a significant number of par-
ticipants has not received. As defined, the system will maintain the original
group as long as member do not exceed the unreachability threshold. Should
the user reiterate the operations repeatedly he will take the risk of creating his
own partition. Another question concerns the telepointer design itself, and
more specifically the associated meter: why is the feedback not displaying
user names or at least discriminate reliable from unreliable participants. This
issue will be corrected in further versions.

� Concurrency control: There is at least one ambiguity on the UI of the con-
currency control mechanism. The colors of the split action do not conform
well with the definition that was proposed, i.e. black for “me” and white for
“other”. This can become a problem if the information presented to the user
becomes intrusive or even confusing.

We are trying to integrate the mechanisms that were presented in a unify way. An
example of the required integration can be demonstrated by the usage of telepointers.
Given that there is only one telepointer available in the workspace, it is a shared
resource for which users must compete. A tailored version of the concurrency
control mechanism could be associated to the locking of the telepointer. This
integration of different mechanisms provides a consistent approach to the design
of complex interaction processes and allows to seamlessly extend the notion of
“distance-adaptation” throughout the whole working environment.

Regarding the underlying support needed for building the current version of the
“distance-adaptation” paradigm, we can make the following three remarks:

� Difficulty of measurement: one issue of this work is how to define the distance,
both in terms of its measurement, and in terms of its expression to the end-
users. System support for defining distance in measurable terms is based on the
failure suspector component of the underlying group-based system. It is hard
from dynamic connectivity information to extract a stable measure to present
too the end-users. The choice of the thresholds is application dependent but
can also be topology dependent which complicates the programming task.

� Assumptions and coverage: the aim of our partition mode is more dedicated
towards support for short periods of unreachability rather than disconnected
operations. Processor or link crashes rarely hold for long. For example,
recent statistics on the T3 backbone show a tendency of 15 minutes or below
for outage duration. However, only experience will tell us if this assumption
holds.

� Finding the right model: this initial work confirms our intuition about modern
group-oriented systems in providing suitable functionality for this type of
synchronous applications over large. Early experiments with Isis shown the
need for a more flexible implementation platform [3]. Horus, the follow-up
project [3], has been selected as one possible target for further development
because its high configurability allows easier modifications.

Conclusions

The objective of the work reported in this paper is to design mechanisms that provide
increased adaptiveness of synchronous and large scale CSCW applications. This
adaptiveness is the result of combining system information with rich interactive
feedback techniques. The described approach can be related to solutions proposed
in other areas of computing, namely media degradation approaches for multimedia
applications, and thus be considered as a useful contribution to solve the problem
of adaptiveness and degradation in computing environments.

One innovative aspect is the concern for unreachability which has been integrated
through all levels of the system. As opposed to system-level failure detection, we
proposed degradation composed of a new intermediate state (unreliable) between
reliable and unreachable. The degree of unreliability of users is calculated and
forwarded to upper layers of the system. Furthermore, history information can
always be used for diagnostic purposes. When participants are unreachable, we
preserve potential for maximum animation by allowing multiple partitions to operate
concurrently. Seamless transitions from full connection to partition operation mode
and vice-versa are achieved by defining appropriate splitting and merging rules.

A great deal of work remains to be done in order to generalize the approach
proposed by the “Distance-Adaptation” paradigm. We have concentrated our efforts
on preserving animation without dealing with the potential conflicting concurrent
updates when operating in partition mode. This is the concern of on-going work
and we are studying how we could integrate our work with existing approaches like
active diffs [3].

The user interface techniques that were presented are meant to be general and
widely applicable to different cooperative applications. Furthermore, as mentioned
earlier, the expressive power of these interface mechanisms can be further enhanced
with multimedia facilities, from more sophisticated graphics to virtual reality fea-
tures. In any case, the point we tried to make is that the distance notion can be
usefully expressed and transmitted to the users of CSCW applications. The con-
textual clues on underlying system state allow them to adjust their expectations and
define appropriate strategies throughout cooperative sessions.

Acknowledgements

We are grateful to Alexandre Lefebvre and Susan Tinniswood for commenting on an early version
of this document. Many thanks to David Matos for his valuable help with LATEX.

[1] Colin Allison and Mike Livesey. Coping with Concurrency in Real Time Groupware. In
Proceedings of the Usenix SEDMS IV, pages 289–295, September 1993.

[2] P. Antunes and N. Guimaraes. Multiuser interface design in cscw systems. Technical Report
Volume 3 - Systems Engineering, Chapter: 4 - Cooperative Working, ESPRIT Basic Research
Project 6360, Broadcast, 1994.

[3] Kenneth P. Birman and Robbert van Renesse. Reliable Distributed Computing with the Isis
Toolkit. IEEE Computer Society Press, 1994.

[4] S.J. Gibbs C.A. Ellis and G.L. Rein. Groupware, Some Issues and Experiences. CACM,
34(1):38–58, January 1991.

[5] François J.N. Cosquer and Paulo Veríssimo. Survey of Selected Groupware Applications
and Supporting Platforms. Technical Report RT-21-94, INESC, Rua Alves Redol 9-6 � , 1000
Lisboa, Portugal, September 1994. (Also available as BROADCAST Technical Report [2nd
year - Vol 1]).

[6] François J.N. Cosquer and Paulo Verı́ssimo. Large Scale Distribution Support for Cooperative
Applications. In Proceedings of the European Research Seminar on Advances in Distributed
Systems (to appear), April 1995. (Also available as INESC Report AR 2/95).

[7] Geoff Coulson, Gordon S. Blair, and Philippe Robin. Micro-kernel Support for Continuous
Media in Distributed Systems. Technical Report MPG-93-04, Lancaster University, Distributed
Multimedia Research Group, Dpt of Computing, Lancaster University, Lancaster, LA1 4YR,
U.K., 1993.

[8] T. Crowley, P. Milazzo, E. Baker, H. Forsdick, and R. Tomlinson. Mmconf: An infrastructure
for building shared multimedia applications. In CSCW 90, pages 329–342, October 1990.

[9] Paul Dourish and Victoria Bellotti. Awareness and Coordination in Shared Workspaces. In
CSCW 92 Proceedings, pages 107–114, November 1992.

[10] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of Distributed Consensus with
One Faulty Process. Journal of the Association for Computing Machinery, 32(2):374–382,
April 1985.

[11] S.E. Goodman, L.I. Press, S.R. Ruth, and A. M. Rutkowski. The Global Diffusion of the
Internet: Paterns and Problems. Communications of the ACM, 37(8):27–31, August 1994.

[12] D.P Reed J.H Saltzer and D. Clark. End-to-end arguments in system design. ACM Transactions
on Computer Systems, 2(4):30–41, November 1984.

[13] Michael B. Jones. Adaptive Real-Time Resource Management Supporting Composition of
Independently Authored Time-Critical Services. In Proceedings of the Fourth Workshop of
Workstation Operating Systems, pages 135–139, October 1993.

[14] M. Frank Kaashoek, Andrew S. Tanenbaum, and Kees Verstoep. An Experimental Comparison
of Remote Procedure Call and Group Communication. In 5th ACM SIGOPS Workshop on
Models for Paradigms for Distributed Systems Structuring, September 1992.

[15] Sten Minor and Boris Magnusson. A Model for Semi-(a)Synchronous Collaborative Editing.
In Proceedings of the Third European Conference on Computer-Supported Cooperative Work
- ECSCW’93, pages 219–231, September 1993.

[16] Broadcast partners. Broadcast - technical annex. Technical Report Project BRA 6360, Esprit,
July 1992.

[17] F. Penz, P. Antunes, and M. Fonseca. Feedback in computer supported cooperation systems:
Example of the user interface design for a talk-like tool. In 12th Schaerding International
Workshop, The Design of Computer Supported Cooperative Work and Groupware Systems,
Schaerding, Austria, jun 1993. Elsevier Science.

[18] R. van Renesse, Ken Birman, Robert Cooper, Brad Glade, and Patrick Stephenson. The Horus
System. Technical report, Cornell University, July 1993.

[19] Aleta Ricciardi, Andre Schiper, and Kenneth Birman. Understanding Partitions and the No
Partition Assumption. In Proceedings of the 4th Workshop on Future Trends of Distributed
Computing Systems, pages 354–360, September 1993.

[20] Mark Roseman and Saul Greenberg. Groupkit: A Groupware Toolkit for Building Real-
Time Conferencing Applications. In Proceedings of the Conference on Computer-Supported
Cooperative Work - CSCW’92, pages 43–58, November 1992.

[21] Alain Sandoz, Francois Pacull, and Andre Shiper. Duplex: A Distributed Collaborative
Editing Environment in Large Scale. In Proceedings of the Conference on Computer-Supported
Cooperative Work - CSCW’94, October 1994.

[22] K. Schmidt and T. Rodden. Putting it all together: Requirements for a CSCW platform. In 12th
Schaerding International Workshop, The Design of Computer Supported Cooperative Work
and Groupware Systems, Schaerding, Austria, jun 1993.

[23] A. Shiper and A. Ricciardi. Virtually Synchronous Communication based on a weak failure
suspector. In Proceedings of the 23rd Int. Conf. on Fault Tolerant Computing Systems, June
1993.

[24] Steven H. Tang and Mark A. Linton. Pacers: Time-Elastic Objects. In Proceedings of the
Sixth Annual Symposium on User Interface Software and Technology - UIST’93, pages 35–43,
November 1993.

[25] Jonathan Trevor, Tom Rodden, and Gordon Blair. COLA: A Lightweight Platform for CSCW.
In Proceedings of the 3rd European Conference on CSCW (ECSCW’93), pages 15–30, Septem-
ber 1993.

