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Abstract

This document outlines some approaches, experiences and results of the
user-interface design in several CSCW systems, highlighting a set of issues re-
lated with the successful user-interface design and defining a background where
functional and innovative approaches to the development of synchronous co-
operative systems will be experimented.

1 Introduction

The design and construction of cooperative applications poses a set of challenges at
the user-interface design level. An appropriate design must consider the necessary
mechanisms and schemes to offer an high degree of shared context, awareness and
tailorability to cooperating users.

Following the common 2�2 matrix classification of CSCW [Johansen 91,Ellis 91,
Applegate 91,Nunamaker 91], the user-interface design is especially relevant when
synchronous cooperations and geographical dispersed interactions are considered.
In this context strategies to limit the impact of the underlying communications
system on the user interface functionality should be considered.

This document outlines some approaches, experiences and results of the user-
interface design in several CSCW systems, defining a background where functional
and innovative approaches to the development of synchronous cooperative systems
will be experimented.

The outline of the document is the following. The issues relevant to the design
of shared spaces are discussed in section 2, including the management of users’
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interactions, the display organization and the design constraints imposed by the
architecture of the application. The combination of shared and private spaces is
discussed on section 3. In section 4 the screen space management is considered.
Section 5 deals with concurrency and concurrency control. Finally, in section 6, the
design approaches to support awareness in cooperative work are presented.

2 Shared spaces

Shared spaces are the most noticeable way to support multiuser interactions in a
shared environment based on personal workstations with graphical displays, key-
board and pointing devices.

Shared spaces are defined by [Sarin 85] as the parts of several users’ graphical
displays “in which everyone sees the same information” and by [Kamel 93] as “a
shared, dynamically updated display with one or more control centers.” This kind
of functionality has been originally attributed to the NLS system dated from 1968
[Sarin 85,Greenberg 90,Engelbart 88b,Engelbart 88a].

The user-interface design issues posed by shared spaces are significantly different
from the ones posed by a single user environment. In particular, the interaction
modes must address multiple users’ interactions, different paradigms for display
organization must be supported, the management of the users’ interactions must
address the group perspective and several design constraints are imposed by the
architecture of the cooperative application.

2.1 Interaction modes and WYSIWIS

WYSIWIS (What You See Is What I See) [Stefik 87] is a mode of interaction that
assures that any of the shared spaces presents exactly the same information. This
strict definition of WYSIWIS requires all attributes of shared spaces to be equal,
not only the contents but also position, size, colors, scrollbar positions, iconification
status, pointer position, etc. It is due to this strict definition that WYSIWIS gives
a strong sense of shared context [Ellis 91] and allows users to be able to exercise
contextual communication using terms like “this object” or “here.”

Two issues should however be noted. First, experience with strict WYSIWIS
has reported the need for looser coupling [Dewan 91], basically because cooperative
work is a mix of public but also private work. Second, strict WYSIWIS requires
a heavy use of the underlying communications system in order to propagate the
users’ inputs and outputs among the shared spaces. It has been reported that strict
WYSIWIS is very difficult to implement efficiently [BL92].

WYSIWIS can be relaxed in several ways [Stefik 87,Ellis 91]. In the display space,
by allowing each user to view different sets of objects in the shared spaces. In the
time of display, by recognizing the problem posed by long delays in communications
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or when reducing the communication load by compressing events. In subgroup
population, by reducing the set of participants which require tightly coupling. And
in congruence of view, by allowing personal customization of window attributes,
like window position or size.

[NW92] defines WYSIWIMS (What You See Is What I May See) which allows
independent viewing perspectives of the same canvas. WYSIWIMS is an extension of
relaxed WYSIWIS in the display space, based on the use of viewports [Greenberg 90].

[Penz 93] defines WYGIWIG (What You Get Is What I Get) as a conceptual model
that accepts momentary discrepancies in the different shared spaces but ensures that
users are aware of the operations being carried out.

Many systems adopt one or several of these approaches. GROVE [Ellis 91] relaxes
congruence of view by allowing different colors of objects in windows to reveal
different read/write permissions. GroupDesign [BL92] has a time-relaxed WYSIWIS
mode, which allows a user to suspend window modification notifications, and a
display space relaxed WYSIWIS by allowing users to have their own view of the
shared drawings. GroupDesign also uses a form of WYGIWIG by animating user
operations like resizing in each space, instead of simply replicating the local users’
inputs. [Cook 91] relaxes WYSIWIS in grain size by eliminating progressive changes,
like the ones that occur when moving objects, and by not displaying on each shared
space other cursors than the users’ one. Suite [Dewan 91] allows flexible coupling of
window properties in order to avoid “scroll wars” including the scrollbars, position,
size and also menus.

2.2 Management of users’ interactions

As we have seen previously, WYSIWIS, understood in its multiple forms of relax-
ation, is the fundamental paradigm used to describe the functionality of shared
spaces in multiuser interfaces. Of course, the quality of the user-interface design for
CSCW systems relies on the specific implementations of the WYSIWIS paradigm.
WYSIWIS ensures some degree of shared context, awareness and tailorability but
does not guarantee the appropriate management of the users’ interactions. It is
therefore very important to study the strategies adopted by several systems on the
management of multiple users’ interactions.

GROVE was built to allow everyone to see and edit everything without restric-
tions, relying on alternate communication lines (telephone) to overcome possible
problems rather than restricting users’ interactions. Experience with GROVE re-
vealed that actions on the shared space are generally disruptive unless accompanied
by verbal explanation but that collisions are surprisingly infrequent [Ellis 91].

RTCAL, on the contrary, allows input from one user only [Greenberg 90]. This ap-
proach requires implementing appropriate control mechanisms and policies which
may be too restrictive compared to the subtle and natural control exerted in face-to-
face meetings.
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Suite [Dewan 91] allows users to define the coupling between shared spaces on
a per object basis. Users can decide if changes to an object shall be transmitted to
others, decide when to transmit and decide when to receive updates from other
users. Objects are locked while being manipulated. This approach is similar to
the previous one in the way that it only allows input from one user but restricts
that functionality to several possibly locked objects rather than to one single shared
space.

[Antunes 93,Antunes 91] addresses the separation between data and display ob-
jects, allowing multiple and possibly different views of the same application data.
Users’ interactions are mediated by the display objects and controlled by shared
dialog objects. The dialog objects support different interaction styles and can be
tailored by systems designers but not by end users.

[Bentley 92] describes “Cooperative User Display Agents” which are local to
each user’s workstation and manage the user’s interactions with one object. The
agents separate the application data from the user interface and encapsulate multiple
display management of one data object. Users can interact directly with these agents
for local tailorability of focus, visualization and position of each object.

Another issue associated with the management of users’ interactions has to do
with the pointers.

One approach, followed by MBlink [Sarin 85], is to implement multiple pointers
on the shared space, which is done using low level graphical operations on each
workstation’s window.

Ensemble [NW92] supports multiple pointers but users can decide whether to
export their pointer or not.

[Crowley 90] recommends, by experience, to restrict the number of pointers in
shared spaces to two: the user’s pointer and a shared telepointer. The telepointer
eliminates the distraction found when many cursors are visible at once [NW92].

In MMConf [Crowley 90] the telepointer is activated by an user pressing the
middle mouse button while moving the mouse. rIBIS [Rein 91] uses instead a group
mouse which any user can grab and move using the workstation’s mouse. The
group mouse is automatically released if idle for more than five seconds.

TelePICTIVE [Miller 92] allows to activate the telepointer at the destination site,
i.e. an user selects which user to monitor with the telepointer.

2.3 Display organization

Shared spaces do not have necessarily to conform to a flat surface where group
work may be confusing, unfocused and chaotic [Ellis 91]. Several systems try to
organize shared spaces in a way that keeps WYSIWIS properties but providing
further display organization which allows individual users to create and follow
parallel work patterns.
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MObViews [Guimaraes 93] uses a matrix-like workspace with one active cell for
each user. Only the active cells accept inputs from the associated users.

GROUPKIT [Roseman 92] uses the concept of “overlays,” transparent windows
that are placed above the main application window. Transparent windows have their
own cursors and accept users’ inputs in the form of graphical annotations placed on
top of the main application graphics.

CaveDraw [Lu 91] has support for “transparent layers,” which can be created on
user demand and where all users can sketch. The transparent layers are stacked so
that each previous layer is dimmed to a light color. Any user can filter the information
displayed on the shared space by individually hiding or selecting transparent layers.
[Lu 91] reports that this solution does not scale well since it is difficult to identify to
which layer a drawing belongs.

ClearFace [Ishii 91] provides translucent, movable and resizable live face win-
dows that can be placed over shared spaces.

LookingGlass [Scrivener 94] provides translucent live windows which are aligned
with the working surface, allowing users to see each other as if looking through a
window. Shared drawings are displayed above the translucent windows.

GroupDesign allows each user to select different modes of viewing the shared
space. A localization mode synchronizes with another user and allows to monitor
all the operations being carried out. An identification mode indicates with colors
the other users’ viewports over specific areas of the shared space.

[Kamel 93] present a classification of the display organization considering:

� Tiled

� User-configurable

� Overlayed – transparent, opaque, cyclic

� Intermingling – transparent, opaque, cyclic

2.4 Architectural issues

The design of shared spaces is not totally independent from the design of the coop-
erative application itself. In fact, any selected architecture imposes several design
constraints which should be confronted with the intended functionalities of the user
interface.

Three different architectures of cooperative applications have been found in the
literature: multiple views of a single user application [Sarin 85,Greenberg 90], cen-
tralized multiuser application and distributed multiuser application [Lauwers 90a,
Lauwers 90b] (some authors separate the distributed architecture in replicated and
hybrid [Santos 93]).
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One considerable design restriction posed by an architecture with multiple views
of a single user application compared with the multiuser application involves the
concept of collaboration-awareness. Single user applications are not aware of mul-
tiple users’ interactions and therefore it is more difficult to customize the system
[Bentley 92]. [Sarin 85] also reports that this kind of architecture cannot support
multiple concurrent contexts, private views of shared information and that par-
ticipants cannot be given different access privileges or environments. On such
systems, the development has concentrated in the support for turn-taking protocols
[Bentley 92]. Shared X [Greenberg 90] is an example of multiple views support to
single user applications.

The discussion of centralized versus distributed architectures has for long been
found in the literature [Lauwers 90a,Ahuja 90,Crowley 90,Antunes 91].

An advantage of the distributed approach is that it tends to generate relatively
low network traffic [Ahuja 90] since outputs to users, which may be significant in
graphics applications, are executed locally rather than being replicated to each site.
Users’ inputs can also be handled locally, thus reducing the network traffic. Of
course, the advantage of the centralized approach is that the system does not need
to maintain the consistency of the distributed data.

Tests with Rapport [Ahuja 90] revealed that the centralized version generated
3.6 times as many messages than the distributed version. For typical applications
based on the X Window System this ratio raises to 6 times. Of course the distributed
approach poses the problem of handling concurrency control which may require
further communication. This issue will be discussed later.

The impact of the delays imposed by the communications infrastructure on the
user interface is certainly one of the important issues in the design of shared spaces.
That impact is reflected by the option for the distributed approach and on the differ-
ent WYSIWIS modes of interaction which are a trade off between the performance of
the communications infrastructure and the desired shared context and awareness.

Dialogo [Lauwers 90a,Greenberg 90], GroupDesign [BL92] and MMConf [Crowley 90]
replicate the application at every site. Users’ inputs are sent to all applications but
the outputs are local.

[Bentley 92] describes a system where, instead of replicating one application in
multiple sites, the application is distributed among multiple sites. In this system
there is a separation between the user interface, which is distributed, and the appli-
cation semantics which is centralized.

[Tatar 91] reports a problem in Cognoter about different delays in delivering
text to users. The delays had to be balanced in order to avoid confusion of users
having a particular text and others don’t. This solution was pertinent in the specific
supporting environment of Cognoter, a centralized application with the users face-
to-face, but is not acceptable in the distributed approach since its main advantage
resides in the more prompt individual feedback.

6



3 Shared and private spaces

Cooperative work implies that users have a shared context and be aware of other
users’ actions. Cooperative work does not require, however, that users be constantly
under the same degree of coupling. In fact, the need for looser coupling has been
reported [Dewan 91]. [Brothers 90] even reports that users appreciated as much
freedom as the software could reasonably provide.

Reasons for loose coupling include: more efficiency in the handling of the tasks
which can be decomposed in multiple parallel subtasks [Stefik 87]; the need for
privacy during cooperative sessions, such as avoiding public embarrassment if the
user is not familiar with the application [BL92,EK90]; allowing users to have different
interests and viewpoints [Sarin 85]; and allowing easier social organization of the
collaborative activities [Dourish 92].

Private spaces “present information that is only visible to the individual partici-
pants” [Sarin 85] and have been combined with shared spaces in several systems.

There are nevertheless several problems introduced by private spaces. Contex-
tual communication is more complex, since users may be trying to reference to other
users information that is only present in their private spaces. Several experiments
with Cognoter [Tatar 91] revealed that users mistook references. The redesign of
Cognoter, Cnoter, only allows users to move from public to private workspaces or
vice-versa as a group rather than individually. This however requires strategies for
discussion and agreement.

Also, “users felt a need to see things in the workspace that the system would
not let them see” [Tatar 91]. Cognoter was designed for editing in private windows
where only the finished text is broadcasted to participants. [Stefik 87] reports that
users of Cognoter expressed frustration at not being able to see what others were
doing. It is therefore important to users to know who is looking at what part of
the shared space, to clearly distinguish private from shared spaces and to be able to
align their views with other users’ views.

The experience with TelePICTIVE has additionally shown the importance of
carefully limiting the extent to which participants can branch into parallel subtasks
due to difficulties in handling inconsistent changes in private spaces [Miller 92].

The usage of private spaces also makes it more difficult to save the shared envi-
ronment [NW92].

In ShrEdit [Dourish 92] there is no distinction between shared and private spaces
but there is an additional private window accompanying each shared window that
reports information on other active users.

MObViews uses a spreadsheet approach, where one of the cells in the spreadsheet
matrix can be selected and turned private.

In ABC [Jeffay 92] shared windows are managed within a virtual screen looking
like another window.
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[Cook 91] describes a system where shared and private spaces occupy the same
physical space of the workstation but in fact are placed on two distinct layers, with
shared views on the back and private views in front. Therefore, the underlying layer
is kept consistent on all users’ workstations. The system makes the distinction clear
to users by using different visual cues.

Capture Lab [EK90] uses physical separation between private and shared spaces.
Each user’s workstation corresponds to a private workspace while a “public com-
puter,” with a large wall-mounted display, is the public workspace. Communication
is done through a clipboard.

DOLPHIN [Haake 94] interconnects public liveboards with personal worksta-
tions. The shared space can be visible at the liveboards and at the personal work-
stations. Objects can be placed on the shared space either by direct hand-writing on
the liveboard or by importing them from the personal workstations’ private spaces.
The system supports different types of objects, including sketches, terminal-typed
text or structured documents.

4 Screen space management

Screen space management deals with tasks similar to the ones assigned to window
managers, i.e. controlling the layout and size of user’s windows. In an environment
with shared spaces this may be a more complex problem since changes done by each
user may have to be reflected on all users’ screens according to the selected WYSIWIS
modes of interaction. Window controls include window size, position on the screen,
position relative to other windows, stacking order and iconification [Crowley 90].

Several relaxed WYSIWIS modes have been defined in order to ease individu-
al screen space management. Cognoter allows different users to position shared
windows at different places on the screen [Dewan 91]. In MMConf [Crowley 90,
Lauwers 90b] position and stacking order are local decisions but window size and
iconification are global to lessen the problems posed by contextual communication.
Suite allows users to select the coupling of window size and position [Dewan 91].

When the environment contains a mixture of private and shared spaces it is neces-
sary to offer some scheme for managing related windows cohesively [Greenberg 90].
The manager should distinguish shared from private windows, all windows asso-
ciated with a particular conference and which of several conferences a window is
associated with [Lauwers 90b].

Dialogo runs a window manager as a replicated application, ensuring that the
same actions are taken on each user’s workstation [Lauwers 90a]. In ABC [Jeffay 92]
shared windows are managed within a virtual screen which is itself a window. Users
may select a window manager for the virtual screen other than the one used for the
rest of the screen.

Dialogo and Rapport use separate workspaces, “rooms,” for organizing shared
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and private windows [Lauwers 90b]. [Cook 91] describes a model with shared and
private “perspectives” each one containing inside several shared or private views,
respectively. Users can navigate and move views across perspectives through doors
(an icon that looks like a door). Views gain the public/private characteristics of the
hosting perspective.

5 Concurrency and concurrency control

The support of concurrency and concurrency control as requirements for allowing
multiple users’ interactions has a strong impact at the user level in terms of feedback
and control [Rodden 91]. Several strategies have been devised in order to provide
better user interfaces, awareness, and responsiveness of CSCW systems using the
currently available technologies.

The first topic to be dealt with is parallelism, i.e. the support to multiple, si-
multaneous activities. We will also focus on the maintenance of data consistency
in the presence of possible concurrent manipulations. Then, we will highlight the
concurrency control mechanisms necessary to resolve the conflicts which result from
parallel activities.

Two classes of approaches to concurrency control are considered, pessimistic and
optimistic. The pessimistic approach to concurrency control tries to resolve conflicts
prior to their occurrence while the optimistic approach is intended to resolve conflicts
after such conflicts have been detected in the system.

5.1 Parallelism

If “one user’s actions are not immediately seen by others, then the effect on the
group’s dynamics must be considered” [Ellis 91]. While in single-user applications
the non-preemptive scheduling (where an action that follows an input proceeds until
the control is released) is suitable for managing inputs, this may not be acceptable
for multiuser inputs because lengthy computations cause delays on the responses to
other users [Patterson 91].

RENDEZVOUS [Patterson 90] uses light-weight processes to implement preemp-
tive scheduling and consequently allow interleaving of actions and prompt feedback
to all users.

MMM [Bier 91] uses a different approach. Input notifications are broadcasted
to a distributed application with timeouts for responses. If the timeout fires the
destination process is marked as “sick” and further events to it are discarded until
the process is marked as “healthy.” The screen refresh on MMM requires that all
data manipulations stop until a consistent view is produced on each user’s display.
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5.2 Data consistency

A requirement of cooperative systems is the preservation of the consistency of data
in the presence of parallel and possibly conflicting users’ manipulations.

If the application is centralized, like in Xtv [BL90], the input events are strictly
serialized and handled by the centralized concurrency control mechanism. This
solution, by requiring that each user input goes through the server, makes however
the feedback slow. The system is also vulnerable to server crashes.

The distributed architecture corrects the slow feedback problem of the central-
ized model by caching data on each workstation [Stefik 87]. Feedback can then be
produced locally. The distributed application is then required to serialize the users’
input events and to keep the consistency of the distributed data.

In GroupDesign events are sent to replicas describing commands carried out by
each user. The protocol is asynchronous because a replica never waits for a reply
from other replicas. Logic clocks are used to ensure proper consistency.

The DistEdit [Knister 90] toolkit maintains a copy of the state of the editor for
each user. The consistency is ensured by a reliable atomic multicast protocol.

Duplex [Pacull 94] uses a reliable atomic multicast protocol to maintain consis-
tency and also allows discontinued operation in case of network partition.

In Ensemble [NW92] the application is distributed but the concurrency control is
centralized. This ensures the data consistency. The advantage of having distribution
is only on the local feedback of operations. Users see updates from other users as they
are committed in order to maintain the shared context within reasonable bounds.

[Miller 92] argues that the level of locking should be controlled by users. Duplex
gives to users the ability to specify the granularity of objects in order to reduce the
probability of concurrent operations.

5.3 Pessimistic concurrency control

A pessimistic concurrency control mechanism avoids conflicts by requesting a lock
before any data access.

Concurrency can be controlled with a floor-passing strategy which allows only
one participant at a time to lock and manipulate the shared space[Sarin 85]. Both
MMConf and rIBIS support this strategy but also provide less restrictive mechanisms
for concurrency control.

In MMConf a floor manager centralizes floor requests and relinquishes. For fault
tolerance, the manager may serve a floor request without receiving a relinquish.

With a centralized-lock strategy each computer has a copy of the data but cannot
make changes to an item until it obtains ownership of that item [Stefik 87]. In Colab
this approach has yielded unacceptable delays for obtaining locks.
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Transaction mechanisms also support pessimistic concurrency control but have
been reported as not well suited to interactive use due to limitations in response
time and notification time [Ellis 91,Rodden 92].

[Barghouti 91] reports that “serializable concurrency control might decrease con-
currency or, more significantly, actually prevent desirable forms of cooperation.”
CoVer [Haake 93] uses a versioning system for avoiding conflicts. The system mon-
itors changes to objects and when detects conflicts it creates new versions of the
objects and proceeds with parallel tasks.

[Barghouti 91] describes a “conversational transactions” model that adds ver-
sion control primitives (checkout/checkin) to the versioning system. The system
manages a public and several private databases allowing greater concurrency while
ensuring the consistency.

5.4 Optimistic concurrency control

A full optimistic approach to concurrency control consists in allowing users to ma-
nipulate objects without any kind of locking, relying only on socially accepted prac-
tices to ensure consistency. In general, running open floor becomes increasingly
difficult as the number of participants increases [Lauwers 90b]. In particular run-
ning open floor becomes increasingly difficult as the communication delay increases
[Lauwers 90b].

With a “cooperative approach” [Stefik 87,Barghouti 91] data changes are broad-
casted without any synchronization. If two participants make changes to the same
data simultaneously there is a race. The idea behind this approach is to identify
object manipulations on the shared space in a form that indicates to users the race
conditions and rely on them to resolve the conflict. In GroupDesign if a locally
conflicting operation was done previously to the global one, the local operation is
discarded and the user notified.

The “dependency-detection approach” [Stefik 87] corrects the shortcomings of
the cooperative one by detecting the conflicts and requesting human intervention.
Useful information, like the author and time of changes is also provided to users.

[Sarin 85] and [Ellis 91] describe another mechanism where any workstation
broadcasts changes but, after dependency detection signals a conflict, the changes
are reversed. While workstations may temporarily hold inconsistent copies of data,
such inconsistencies are quickly rectified.

Grove uses an “operations transformation” mechanism where changes are done
locally and broadcasted for later dependency detection. If a conflict is found the
operation is “transformed” in order to maintain the global consistency. The trans-
formation depends on the type of operation (add, delete, etc.) and on the serialization
of other concurrent operations [Ellis 91].

Duplex allows users to select between optimistic and pessimistic control on a per
object basis. Since object granularity can also be chosen, the authors consider this
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approach to be adaptive to users requirements.

[Barghouti 91] describes a “group paradigm” that hierarchically divides the prob-
lem of concurrency control in two: a group policy, considering small teams and
possibly being optimistic, and a global policy that ensures the correct serialization
of several groups and which may be pessimistic.

6 Awareness of cooperative work

In the course of everyday human interaction people use an extremely rich spec-
trum provided by intonation and/or body language and facial expressions to me-
diate feelings [Viller 91] and to synchronize the communication [Penz 93]. Ges-
tures are specially relevant to focus attention and control the flow of a conversation
[Greenberg 89].

This suggests the need for voice and video channels accompanying computer
cooperations, as for instance in the TeamWorkStation [Ishii 91] or ARKola [Gaver 91].
If no such channels are available the system should at least offer each user some
“awareness of others” as a form of compromise.

Furthermore, if computers mediate users’ interactions there is also a legitimate
request for providing to each cooperating user awareness of what other users are
doing with the computer [Lee 90,Jirotka 91].

Another kind of awareness which computers can support is “group awareness,”
i.e. information directly delivered from a user to the group [Penz 93]. Telepointers
are an example of support to this functionality.

6.1 Awareness of other users

The intention is to provide some “feeling of presence” to users as if they were in a
face-to-face meeting.

Grove displays small faces of participants in a shared space. If users enter or
leave the shared space their pictures appear and disappear accordingly.

FaceTalk [Penz 93] displays cartoon faces that users can configure to correspond
to particular moods (agreement, disagreement, sadness, irritation, etc.).

ShrEdit has a control window which displays the names of participants in a
session. Users can use this window to find or track other users on the shared space.
[Dourish 92] reports that these features were not much used but considers that the
problem was in the design of their user-interface.

In TelePICTIVE [Miller 92] each user is assigned a unique color which is displayed
in any object that the user selects.

[Dourish 92] proposes using “change bars” indicating areas which have been
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modified together with additional information like nature of changes and identity
of who made the change. This information brings closer asynchronous work to
synchronous work.

6.2 Awareness of other users’ activities

[Nielsen 93] points out that users of cooperative settings are reluctant to expend
effort in entering information on the computer for the purpose of being helpful to
others. The awareness of other users’ activities must be captured by the system.

Strict WYSIWIS is certainly the best way to provide awareness of others’ activities.
However, as [Ellis 91] points out, “a good group interface should depict overall group
activity and at the same time not be overly distracting.” Several systems have been
able to implement more subtle variations of this kind of awareness.

In GroupDesign [BL92] an icon displayed over an object indicates that a change is
about to be made by a user. While the icon is displayed the object is partially locked.
GroupDesign also does a form of echoing one user’s actions in other users’ shared
spaces. For instance, to move a rectangle, a “move” icon is first displayed on the other
users’ spaces and then, after the move is done, the icon is erased and the rectangle
is smoothly moved to the new position. The advantage of this approach is that the
move animations are done locally which simultaneously preserves awareness and
reduces the communications load.

MULE [Pendergast 90] uses colors to identify locked text lines of a multiuser
editor. The “free” lines are displayed in white while locked lines are displayed in
yellow to the locking user and red to the other users.

GROVE uses a “cloudburst” model of text editing, where text changes color while
being aged, which allows users to identify pieces of modified text.

GroupDesign also uses colors to display the age of objects, has a localization
mode, which allows to visualize areas being edited by other users, has an identifi-
cation mode which shows who created objects, and uses history to replay the last
actions of the group.

6.3 Group awareness

Telepointers permit to point at information under discussion and develop meta-
discussions [Crowley 90].

In Ensemble users can decide if they want to export the pointer or to import other
pointers, which allows to customize individually the group awareness.

In MBlink a participant can see a pointer reporting the current mouse position
and one other pointer that identifies the actual position as seen on the other users’
workstations. The user can judge when the other participants’ shared spaces will
catch up and display the pointer at the same position [Sarin 85].
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The graphical annotations over the main applications supported by GROUPKIT
also qualify as group awareness.

VideoDraw mixes video with a drawing surface [Greenberg 90] which allows
richer forms for delivering information to the group.

7 Conclusion

We have highlighted a set of issues related with the successful user-interface design
of CSCW systems. From this description we present a summary table and observe
the following issues:

� The functionality of shared spaces requires the selection of WYSIWIS modes of
interaction, the management of the users’ interactions, a display organization
suitable to structure parallel work patterns, and careful study of the design
constraints imposed by the architecture of the application.

� The combination of shared and private spaces requires adequate strategies to
avoid degradation in shared context.

� The screen space manager should organize the individual environment, dis-
tinguishing shared from private spaces and providing tailorability.

� The system must support concurrency and concurrency control. Pessimistic
and optimistic approaches can be considered.

� The system should enrich the communications medium with information com-
monly available in face-to-face interactions, including awareness of users,
awareness of users’ activities and group awareness.
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Shared spaces
Interaction modes Strict WYSIWIS, relaxed WYSIWIS, WYSIWIMS,

WYGIWIG.
Management of users interactions No input restrictions, input from one user only, per

object management, shared dialog objects, user dis-
play agents. Multiple pointers, user selected point-
ers, telepointers.

Display organization Tiled, user-configurable, overlayed, intermingling,
transparent, opaque, cyclic.

Architectural issues Multiple views of single application, centralized
multiuser application, distributed multiuser appli-
cation.

Shared and private spaces Accompanying windows, spreadsheet approach,
virtual screen, distinct display layers, physical sep-
aration.

Screen space management Replicated window manager, multiple window
managers, rooms, perspectives.

Concurrency and concurrency control
Parallelism Light-weight processes, messages.
Data consistency Centralized, logic clocks, reliable atomic multicast

protocols.
Pessimistic concurrency control Floor-passing, centralized-lock, transactions, ver-

sions, conversational transactions.
Optimistic concurrency control Social practices, cooperative, dependency-detection,

reversed changes, operations transformation, adap-
tive, group paradigm.

Awareness of cooperative work
Awareness of others Small faces, cartoon faces, control window, colors,

change bars.
Awareness of other users’ activities Echoing of actions, locking colors, cloudburst mod-

el, aging colors.
Group awareness Telepointers, graphical annotations, mixed video.

Summary table
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