
A Distributed Model and Architecture for Interactive Cooperation

Pedro Antunes Nuno Guimaraes
IST/INESC

R. Alves Redol No. 6 1000 Lisboa, Portugal
e-mail: fpaa,nmgg@inesc.pt

Abstract

Cooperation systems are intrinsically related with user

interface systems. The design and implementation of

a framework to support the construction of interactive

and cooperative applications must be a consistent ex-

tension of the models and architectures of single user

applications. The requirements for this extension in-

clude the management of the communication and co-

ordination between users, the support for several levels

of feedback (feedback about machine activities, individ-

ual user activities and group activities), the handling

of the synchronisation issues.

This paper describes a distributed cooperation system

based on a user interface toolkit and an interactive

construction tool. The toolkit and tool were extended

to enable communication, data sharing and coordina-

tion among several interacting users.

1 Introduction

Interactive systems and applications have evolved with

the objective of providing better communication be-

tween human users and computing systems, by im-

proving the usability of the user interfaces and increas-

ing the bandwidth of the person-machine communi-

cation. Distributed systems have been evolving with

the goal of increasing connectivity between comput-

ing systems, enlarging available resources and provid-

ing more exible communication infrastructures. The

availability of increasingly better user interfaces and

powerful distribution platforms has certainly a strong

impact on the development of Computer Supported

Cooperative Work (CSCW).

Considering CSCW as any computer based system or

tool designed to support users' cooperations leads us

to a large set of approaches [9,8], merging technolo-

gy, psychology and social sciences. Several systems

are included in this broad category of tools, ranging

from mail systems to conferencing facilities and multi-

user editors. Several taxonomies have been proposed

taking into account the simple time/space 2x2 ma-

trix (same time, same place, di�erent time, di�erent

place) [12], and other aspects of the tasks being col-

laboratively carried out [2,7].

Two other technological dimensions commonly used to

classify CSCW systems are considered in this paper:

awareness and support.

The awareness dimension classi�es CSCW systems ac-

cording to the degree of information the system is able

to provide to users about the cooperative tasks. In

the extremes of this taxonomy we �nd shared win-

dow systems [15], which integrate single user applica-

tions transparently, and electronic classroom systems

[7] designed with explicit consideration for the collab-

orations that occur among users. In this later case,

systems are classi�ed as collaboration aware systems,

as opposed to collaboration transparent [23]. Collab-

oration aware systems must support several levels of

feedback, including feedback about machine activities,

individual user activities and group activities [18].

The support dimension relates to the complexity of the

technologies available for executing cooperative tasks;

ranging from the simplest communication-only tasks,

passing by information sharing tasks and ending in

process tasks, which require communication, informa-

tion sharing and also coordination and synchronisa-

tion [2].

Our objective is to design and implement a system

which allows the easy prototyping of interactive and

cooperative applications. This kind of applications re-

quires both awareness and process support. The next

section outlines the premises of our approach and un-

derlying models. Section 3 presents the architecture

that was designed to support the approach. The fol-

lowing section describes some examples that illustrate

the mechanisms put into operation. The �nal sections

open the discussion of some issues and enumerate some

preliminary conclusions.

paa
Proceedings of the 4th Workshop on Future Trends of Distributed Computing Systems, FTDCS '93. Lisboa, Portugal: IEEE CS Press, 1993, pp. 143-149. (ISBN: 0-8186-4430-3).

2 Rationale and models

The rationale behind our approach to the design of

a cooperation platform can be summarised in the

following principles:

Interactive systems and applications for

human-machine communication have been

analyzed, designed and implemented accord-

ing to models that structure the functionality

and guide the architecture. Multiuser inter-

faces should not incur in fundamental con-

icts with these models. Instead, they can be

based on appropriate extensions of the pre-

vious models.

Single user interfaces de�ne several levels of interac-

tion, and group functions in broad categories usually

de�ned as Presentation, Dialog and Semantic Support.

An immediate extension of these categories to the mul-

tiuser environment leads us to de�ne Multiuser Pre-

sentation, Multiuser Dialog and Multiuser Semantic

Support.

The current design and implementation of in-

teractive applications reects an integration

of the User Interface (UI) models mentioned

above, with object oriented methodologies

and techniques. This approach contributes

to the de�nition and design of encapsulated

components that have clearly de�ned inter-

faces and functionalities.

Based on this notion, single user interactive applica-

tions are aggregates of objects, appropriately intercon-

nected, that implement the desired interactions. Mul-

tiuser interfaces should also be designed as aggregates

of objects, distributed among the contexts of the sev-

eral users, interacting according to both single- and

multiuser related rules.

However, it is not enough to distribute objects in

order to allow di�erent place interactions. These

objects must also be distributed in the di�erent time

dimension.

Given these two broad principles, we will now briey

describe the single user interface model and the

extensions which had to be introduced in order to

support the di�erent kinds of distribution.

User interface model

The stand-alone user interface environment is organ-

ised around an interactive construction tool that as-

sembles interactive artifacts, i.e. groups of objects

with distinct identity and presenting a given look, feel

and functionality. The interactive artifacts are com-

posed by aggregation of elementary objects, provided

by a user interface toolkit.

Artifacts are assembled on-line and their function-

ality can be immediately parameterised and tested.

This includes mechanisms to control user interac-

tions, handle mid- to complex dialogues, execute some

application-level computations (semantics) and inter-

face with the rest of the application in a standard way.

The artifacts can be stored for later retrieval, preserv-

ing the current state of the construction environment.

The tool is also able to generate class-like persistent

descriptions of artifacts for later reuse and multiple

instantiation.

The objects provided by the toolkit are divided in

four categories: Display objects encapsulate the in-

put/output systems, managing the low-level interac-

tion with the user (Presentation); Dialog objects man-

age the sequence of interaction elements; Data ob-

jects are abstract data types, providing common da-

ta manipulation operations and interfacing with the

application-level operations (Semantic support).

Display and Data objects may be viewed as active

variables which generate events when manipulated by

the user or by the application, respectively. Dialogs

and Drivers perform operations on active variables by

receiving the events from Display and Data objects.

The global behaviour of an artifact is determined by

the speci�c behaviour of the selected toolkit elements

plus the links established between those elements. The

links are event propagation channels between objects.

See �gure 1.

A complete description of both tool and toolkit can

be found in [11].

Display

User

Data

Application
level

Dialogue

Driver

Figure 1: UI model

Multiuser interface model

As stated in the above principles, our approach to the

design and implementation of a cooperation platform

was to extend the single user models and mechanisms

in the multiuser direction. According to the model

presented above, there are clear extension paths:

� Distributed Display objects result in shared Pre-

sentations, in the line of shared window systems.

� Distributed Dialogs address the coordination of

multiple user interactions.

� Distributed Data objects support information

sharing of the application semantics and part of

its state.

In this paper we did not selected the Display ob-

jects for multiuser extension. Not sharing Display

objects results in the impossibility of implementing

strict WYSIWIS multiuser interfaces. This has the

advantage of avoiding concurrency control at the

presentation level but imposes speci�c metaphors to

designers and end users. Aspects related with these

problems have been discussed in [10].

The multiuser model is similar to the previous single

user model extended with artifacts that can be dis-

tributed through multiple sites by means of the dis-

tributed Dialog and Data objects. These extensions

are implemented over a reliable multicast protocol,

xAMp [21], and distribute objects by replicating their

contents and broadcasting data changes.

Reviewing the CSCW dimensions described in the

introduction, this multiuser model only addresses the

space, support and awareness basic requirements. The

higher-level CSCW functionalities, like coordination of

users' activities, protocols for users' access to shared

information or telepointers for joint discussions, are

implemented at the toolkit level.

The time dimension is also not considered by the

model. The functionalities related with this dimension

are handled at the toolkit level by manipulating

the consistency of the distributed objects. A strict

consistency of the replicas gives the necessary support

for same time operations, while relaxed (delayed or

negotiated) consistency allows a quasi- di�erent time

approach. A full di�erent time implementation is

not currently implemented in the toolkit, mainly due

to the lack of an appropriate mechanism and xAMp

support. The next section delineates a di�erent

approach to this problem by allowing di�erent time

interactions between artifacts, instead of di�erent time

interactions within artifacts.

We stress that from the CSCW viewpoint the quality

of the supported cooperative applications depends

mostly on the higher-level functionalities implemented

in the toolkit Data and Dialog objects. Some of these

functionalities have not yet been identi�ed but the

currently implemented distributed objects rely on the

following mechanisms:

� Replication { is the basic mechanism used to

share application data and user interactions

� Locks { allow control of cooperation either by

the application (implicit control) or by the user

(control-free). At the lowest level locks are also

used for synchronisation and concurrency control

� Relaxed consistency { gives autonomy to users'

activities

� Strict consistency { for same time activities

� Pre-requisites { support coordinated users' activ-

ities

� Rules { support collaboration protocols

Somemore implementation details relating integration

of the toolkit with the xAMp can be found in [1].

3 Architecture

We found two reasons to provide further support in the

cooperation platform. First, the UI construction tool

should work well with the multiuser extensions, which

is not a trivial task given that multiple tools and users

are involved. Second, the necessity to create artifacts

with high synchronisation and coordination within

the aggregate is restricted to some CSCW tasks.

In fact, cooperating users often require autonomy

and tailorability [7,19]. This leads to the idea that

artifacts are not frequently shared by the users but

instead presented to users by other users and therefore

synchronisation and coordination are done at a macro

level.

Clearly some mechanisms to decentralise artifact con-

struction, allow loose interactions between artifacts

and the construction tool, and allow loose interac-

tions between artifacts and application semantics are

needed. The adopted system architecture takes this

aspects in consideration by using Multiuser Interface

(MUI) servers.

One server is attached to each user and mediates all

her/his interactions through artifacts that the server

is able to instantiate locally. The server has access to a

communication medium to receive and send messages

that control artifacts instantiation, deletion, queries

about artifacts running in the server or handle artifact

collisions (same objects with the same names).

The artifacts instantiation uses the mechanisms for

storage/retrieval previously referred. The intended

functionality is to allow users to create artifacts, using

the UI construction tool, and send their descriptions

within creation messages to remote servers. A success-

ful interpretation of an artifact by a server results in its

recreation on-site, providing the interaction with the

user and the interface with the application level. This

mechanism is similar to the one used by the NeWS

window system [24], whereby Postscript programs can

be loaded in the networked window servers.

We see the presence of an artifact in a MUI server

as a request or solicitation for a user to perform a

collaborative task. Presumably, several artifacts will

be stacked on the user surface at a time. This will

require appropriate management of the artifacts, for

instance to allow browsing. To some extent, browsing

and navigation across a group of artifacts requesting

user actions is analogous to the navigation process

that occurs in hypermedia systems [4].

The application level computations can be placed in

one or several servers and share the communication

medium used by the MUI servers. The interaction

is done between artifacts and application servers and

the MUI servers are transparent. This preserves the

independence between artifacts and MUI servers.

The interface with the application level is guaran-

teed by Data objects that broadcast messages through

the servers' communication medium to the interest-

ed application servers. This approach complements

the replicated approach of the multiuser model be-

ing more oriented to the loose cooperations between

users. Also, the communication between artifacts and

application servers can be fully di�erent time, e.g. one

application server can be waiting for a message from

an artifact that may have not been created.

The global view of the system shows users interacting

with the construction tool and sending artifacts to oth-

er users, and users interacting with running artifacts

and producing high level events which are delivered to

remote application servers. See �gure 2.

The current implementation of this system uses MBus

from the ConversationBuilder [3,14] as the communi-

cation medium.

MUI
Server

MUIServerTool
UI Const.

Site

Application
 Server

MUIServer

Application
 Server

Replicated objects

Site Site

Site
Server messages

Figure 2: System architecture

4 Examples

Talk artifact

Figure 3 shows the aggregated objects that form a

talk-like artifact. This artifact allows several users

(two are shown in the �gure) to enter text in areas

visible to all but only writable by one of them.

Replicated Data objects are needed in order to deliver

the written text to the multiple Display objects.

Data

Display Display

text
....................

Dialog Driver

text
....................

other text

....................

User User

other text

....................

Replicated

Site Site

Figure 3: Talk artifact

Blackboard artifact

Figure 4 shows the internal structure of a blackboard

artifact. Several users can write text on the same

visible board of the artifact. The access to the board

is controlled by one of the users, the one that has the

oor control buttons. These buttons control the lock

mechanism of the distributed Dialog. When the oor

is taken only the locked replica accepts and delivers

text entries. The Data and Driver objects are used as

in the �rst example.

text

text
text

text

text

text
text

text

Display Display

Take floorGive Floor

User UserSite Site

Distributed DataDialogDistributed Driver

Figure 4: Blackboard artifact

Voting artifact

This example illustrates some of the combined UI

construction tool and MUI Servers functionalities.

The objective is to allow a user to propose one issue

for voting.

The proponent uses the construction tool to assemble

a vote form visually constituted by a Box with a

Label and two Buttons. The �gure 5 illustrates the

internal structure and executed operations to design

the artifact.

YES NO

What is your vote on the issue ?

link ("set",
 "YES")

link ("set",
 "NO")

broadcast (...)

link ()link ()

DialogDialog

Data
String

Box

Label

Button

Figure 5: Voting artifact

First, the proponent creates the Display objects and

places the issue on the Label and the tags "YES"

and "NO" on the Buttons. A String Data object

is instantiated and used to interface with the votes

counter.

The "YES" ("NO") button is linked to a Dialog

object and programmed to set the String contents to

"YES" ("NO") whenever it receives an event. This

simple mechanism sets the String to "YES" or "NO"

depending on which button is pressed.

The String class selected from the toolkit broadcasts

automatically the object contents to the MBus when

it is updated. The broadcast message has the form:

("object-name" "YES") (we are not concerned here

with the obvious security problems posed by this

implementation).

After the above design operations, the proposer has to

send the voting artifact to the users.

To collect the answers from the various vote artifacts

the proposer must run a server that sits hearing the

MBus and picking the speci�ed messages. Current-

ly this server is speci�ed in C code using the MBus

library. Further development will integrate a spread-

sheet with MBus access that automatically collects the

messages and creates cells with the message contents.

The votes counting will then be a trivial spreadsheet

operation.

5 Discussion and future work

The proposed technical approach has similarities with

the Suite [5] and Rendezvous [17] systems, namely

the mechanisms for updating replicated values and

the decoupling of data and views. One aspect that

should be stressed is the close relation between the

toolkit and UI construction tool and therefore the new

possibilities of its usage.

As [13] clearly states, one must provide powerful

conceptual tools for integrating mechanisms and forms

to support group work. This poses two challenges to

the technical support for CSCW: the tools should be

well integrated with the conceptual and social space of

the collective and the tools should be well articulated

with the mechanisms of group work.

The tool described in this paper is directly derived

from the techniques for UI construction, which cer-

tainly has an important role in the cooperation pro-

cess. However, other tools are certainly needed, like

the Action Space, Node and Version browsers in Con-

versationBuilder [14].

Awareness is critical in CSCW systems [6]. The im-

plemented low-lever mechanisms to support the vari-

ous types of feedback are necessary but require further

implementation at the toolkit level more oriented to

users expectations and better integrated with the con-

struction tools.

We believe that users familiarised with the current

widget-type user interfaces can use artifacts as inter-

actively generated, active and highly-structured con-

versation elements. The real usage of artifacts in real

cooperative tasks must however be assessed. Also, the

necessity to combine alternate channels for informal

communication, like video or voice, must be studied.

The current system platform supports both prescrip-

tive and non-prescriptive cooperative tasks. The ra-

tionale we followed while developing the toolkit was to

separate mechanisms from policies [20] and therefore

no policies are implemented at that level. However,

because artifacts have some computational capabili-

ties, it is possible to design (or re-design) them to

prescribe speci�c interactions. As with the Oval rad-

ically tailorable tool [16], the end-user becomes also

designer.

From the distributed systems support point of view,

we found a lack of support to mixed same time and

di�erent time operations. This aspect and others re-

lated with a better integration between group tech-

nology and CSCW technology will be explored by the

authors on the further development of the CSCW plat-

form and also by the ROMANCE (Replicated Object

MANagement Con�gurable Environment) project [22]

at INESC.

6 Conclusion

We described a cooperation platformorganised around

a UI construction tool and toolkit. The single user

interface models have been extended to include mul-

tiuser interactions.

The functionality of the system is based on artifacts

that can be interactively created, parameterised and

distributed to several users. Artifacts encapsulate

multiuser look, feel and functionality and allow to

combine several mechanisms for sharing data, control

cooperation, maintain consistency and synchronise

activities.

The usage of artifacts is decentralised in space and

time. Users are allowed to disseminate artifacts

through disperse sites and to interact with them on

a discretionary basis.

Artifacts can be articulated and can interact with

application servers allowing both structured and un-

structured cooperations. Several examples of usage

have been given, including a talk-like artifact, a black-

board artifact and a voting artifact.

References

[1] P. Antunes, N. Guimaraes, and R. Nunes. Ex-

tending the user interface to the multiuser en-

vironment. In ECSCW '91, CSCW Developers

Workshop, Amsterdam, September 1991.

[2] L. Applegate. Technology support for cooperative

work: a framework for studying introduction

and assimilation in organizations. Journal of

Organizational Computing, 1(1), 1991.

[3] A. Carroll. ConversationBuilder: Building Blocks

for Open Collaborative Systems. PhD thesis, Uni-

versity of Illinois at Urbana-Champaign, Urbana,

Illinois, 1992.

[4] J. Conklin. Hypertext: An Introduction and

Survey. IEEE Computer, pages 17{41, September

1987.

[5] P. Dewan. Flexible user interface coupling in col-

laborative systems. In Acm SIGCHI Conference

on Human Factors in Computing Systems, pages

41{48, New Orleans, 1991. ACM Press.

[6] P. Dourish and V. Bellotti. Awareness and co-

ordination in shared workspaces. In Proceed-

ings of ACM CSCW'92 Conference on Computer-

Supported Cooperative Work, pages 107{114,

Toronto, Canada, November 1992.

[7] C.A. Ellis, S.J. Gibbs, and G.L. Rein. Groupware:

Some issues and experiences. Communications of

the ACM, 34(1):38{58, 1991.

[8] S. Greenberg. Computer-supported Cooperative

Work and Groupware. Prentice-Hall, 1991.

[9] I. Greif. Computer Supported Collaborative Work

:A Book of Readings. Morgan Kaufmann Pub-

lishers Inc, 1988.

[10] I. Greif and S. Sarin. Data sharing in group

work. In Computer-Supported Cooperative Work:

a Book of Readings, pages 477{508. Morgan

Kaufmann Publishers Inc, 1988.

[11] N. Guimaraes, L. Carrico, and P. Antunes. Ingrid

- an object oriented interface builder. In Fifth

International Conference on the Technology of

Object-Oriented Languages and Systems TOOLS

USA '91, Santa Barbara, California, July 1991.

[12] R. Johansen. Groupware: Future direction and

wild cards. Journal of Organizational Computing,

2(1):219{227, 1991.

[13] P. Johnson-Lenz and T. Johnson-Lenz. Post-

mechanistic groupware primitives: Rhythms,

boundaries and containers. Int. J. Man-Machine

Studies, 34(3):385{418, 1991.

[14] S. Kaplan, A. Carrol, and K. MacGregor. Sup-

porting collaborative processes with Conversa-

tionBuilder. In Conference on Organizational

Computing Systems, pages 69{79, Atlanta, Geor-

gia, November 1991.

[15] J.C. Lauwers and K. Lantz. Collaboration Aware-

ness in Support of Collaboration Transparency:

Requirements for the Next Generation of Shared

Window Systems. In CHI '90: Conference on Hu-

man Factors in Computing Systems, pages 303{

311, April 1990.

[16] T. Malone, K. Lai, and C. Fry. Experiments

with Oval: A radically tailorable tool for coop-

erative work. In Proceedings of ACM CSCW'92

Conference on Computer-Supported Cooperative

Work, pages 289{297, Toronto, Canada, Novem-

ber 1992.

[17] J.F. Patterson, R.D. Hill, S.L. Rohall, and W.S.

Meeks. Rendezvous: an architecture for syn-

chronous multi-user applications. In Proceedings

of the Conference on Computer Supported Coop-

erative Work (CSCW '90), Los Angeles, Califor-

nia, 1990. ACM Press.

[18] F. Penz, P. Antunes, and M. Fonseca. Feed-

back in computer supported cooperation systems:

Example of the user interface design for a talk-

like tool. In 12th Schaerding International Work-

shop, Design of Computer Supported Cooperative

Work and Groupware Systems, Schaerding, Aus-

tria, June 1993.

[19] G.L. Rein and C.A Ellis. rIBIS: A real-time group

hypertext system. Int. J. Man-Machine Studies,

34(3):349{368, 1991.

[20] T. Rodden and G. Blair. CSCW and distributed

systems: the problem of control. In Proceedings

of the Second European Conference on Computer

Supported Cooperative Work { ECSCW '91, Am-

sterdam, 1991.

[21] L. Rodrigues and P. Ver��ssimo. xAMp: a Multi-

primitive Group Communications Service. In

Proceedings of the 11th Symposium on Reliable

Distributed Systems, Houston, Texas, October

1992.

[22] L. Rodrigues and P. Ver��ssimo. Replicated objec-

t management using group technology. In Pro-

ceedings of the 4th Workshop on Future Trends

of Distributed Computing Systems, Lisboa, Por-

tugal, September 1993.

[23] M. Ste�k et al. Beyond the chalkboard: Comput-

er support for collaboration and problem solv-

ing in meetings. Communications of the ACM,

30(1):32{47, 1987.

[24] Sun Microsystems. NeWS Technical Overview,

January 1988.

