
SUPPORT FOR OPEN TOOLS AND SYSTEMS

Lu��s Carri�co, Pedro Antunes, Nuno Guimar~aes,
Paula Pereira, Maria Moreno

IST/INESC,
R. Alves Redol, 9, 6o., 1000 Lisboa, Portugal

e-mail: flmc,paa,nmgg@inesc.pt

Abstract: The construction of interactive tools for current computing environments relies upon a
generic set of characteristics that include an architecture for interaction, a programmingmethodo-
logy based on the object oriented paradigm, and support for rapid prototyping and experimental
programming. This paper describes foundational components that support the construction of
these tools. Two di�erent tools, an application builder and an authoring system, are presented
as examples built on those components.

1 Introduction

Interactiveness is a pervasive characteristic of cur-

rent tools and applications. Multiple devices and

media, heterogeneous interaction environments, and

more demanding user requirements, increase the

complexity of the tools, the cost of their con-

struction and maintenance, the di�culty in keeping

openness1 and a satisfactory degree of reusability. It

is therefore essential to base our work, as tools devel-

opers, in a clear framework where the requirements

can be functionally partitioned, and addressed sep-

arately by complementary developments.

This paper presents a framework that addresses

1We understand openness as the ability to interconnec-

t software modules from di�erent vendors, in heterogeneous

platforms, with a signi�cant degree of customisation and tai-

lorability.

the construction of interactive applications and tools

in a three axes referential: application architecture,

object oriented programming and rapid prototyp-

ing. According to this approach, we considered the

following development and research directions:

� The de�nition of a comprehensive architec-

ture handling all the requirements that may be

raised in the development of interactive tools

and systems. These requirements are related

with both the internal structure of the user in-

terface/application, concerning active compo-

nents and communication between components,

and the use of external services like graphical

systems, storage systems, communication facil-

ities, and handling of multimedia information.

� The intensive use of object oriented program-

ming methodologies and techniques, including

both the facilities provided by the languages

themselves, and the notions that derive from

current and future results of the work on ob-

ject oriented analysis and design.

� The creation of a support for interpretation and

paa
G. Heeg, B. Magnusson, and B. Meyer, Eds. Proceedings of the Seventh International Conference on Technology of Object-Oriented Languages and Systems, TOOLS Europe '92. Dortmund, Germany: Prentice Hall, Englewood Cliffs, 1992, pp. 301-310. (ISBN: 0-13-917436-2).

rapid prototyping, that underlies any interac-

tive tool.

In this paper, we describe what we consider to

be the essential support for interactive tools, in

an open environment. The next section propos-

es an extensible architecture that covers most as-

pects that tools and applications are concerned

with. The following section describes a runtime

system for C++ [Ellis 90] that supports our in-

teractive programming needs. Then a section is

dedicated to tools that were built using these t-

wo main developments. The �rst tool is the IN-

GRID application builder. We just describe how

the facilities of the support components have been

used. More detailed description of the tool is given

in [Carri�co 90,Guimaraes 91a,Guimaraes 91b]. The

second tool is a hypertext system [Conklin 87], that

mimics part of the HyperCard [Harvey 88] function-

ality in the Unix2/X3 environment. The most in-

teresting aspect of this tool, HypIngrid, is that it

evolved from the INGRID tool with a minimal ef-

fort, thus proving the concept that the underlying

support for interactive programming and applica-

tion construction is generic and reusable. We �nish

with an overview of future directions, as well as a

set of conclusions.

2 Architecture for Interaction

The de�nition of an architecture for interactive

applications should provide the structural guide-

lines for its construction according to the following

premises:

� a clear separation between the computational

and interactive parts of an application (dialogue

independence as de�ned in [Hartson 89]);

� a well de�ned, and complete, functional parti-

tion within the interactive component;

� a methodological approach to the composition

of those functional parts, for organising simple

components into higher level abstractions.

2Unix is a trademark of Unix Systems Laboratories
3X Window System is a trademark of the Massachussets

Institute of Technology

Naturally, the use of an object-oriented approach

contributes to the clarity of the above issues, pro-

viding the basic structuring mechanism for the de-

sign of the application. Moreover, considering the

e�ort already spent in existing toolkits and libraries,

the architecture should promote an easy integration

of those elements, in its structural and behavioural

aspects.

Functional partition

According to the above principles, we de�ned the

4D architecture. This architecture classi�es the ob-

output

input

Data

Dialogue

Display
A

pp
lic

at
io

n
C

od
e

PresentationDialogueSemantic
 Support

Interaction System

Driver

Driver

Driver

Figure 1: The 4D functional architecture

jects composing an interactive application into four

possible categories as shown in �g. 1:

Display: This category is the interface to the in-

teraction system, usually a graphical system or

a set of multimedia devices, and correspond-

s to the presentation component of the UI

(according to the models commonly accepted

[Myers 89]). One of the roles of Display object-

s is to integrate existing UI components, such

as Xt widgets [Young 89,Young 90], adapting

them to the global 4D architecture.

Data: The main role of these objects is to provide

the interface between the interactive and com-

putational parts of the application. In gener-

al this category represents abstract data type-

s that range from simple ones (like Integers,

Floats or Lists), to full database access, in-

terprocess communication, or even types ad-

dressing distribution [Antunes 91]. Data ob-

jects are another locus for integration of exist-

ing class libraries (like libc++, libg++ or NI-

HCL [Gorlen 90]).

Dialogue: Dialogue objects de�ne the control of

the interaction. As they integrate with the

other components, they propose the de�nition

of event driven dialogues. However, other dia-

logue models can be easily supported.

Driver: Elements of this category manage the

transfer of information between objects. Their

role is basically to perform data conversion, op-

timising the integration of the other compo-

nents. Examples of drivers are objects that

convert toolkit speci�c data (e.g. Xt values)

to or from abstract data (e.g. integers dialogue

tokens, strings, collections ...).

Models like PAC [Coutaz 87,Coutaz 90] and

MVC [Goldberg 83a,Dodani 89] de�ne a similar

global functional partition for interactive applica-

tions. However, MVC forces a separation between

user input (Controller) and display output (View)

not imposed in 4D. On the other hand, neither mod-

el considers the role of drivers as an independent

component of the application.

Dynamics of the architecture

The 4D architecture introduces a �fth concept ad-

dressing the dynamics of the application. It de�nes

a single communication paradigm between compo-

nents:

Link: A selective communication channel that car-

ries messages between objects. Each link is

characterised by a sender object, an event i-

denti�cation on that sender, a receiver and an

action to be performed on the receiver.

When an event is triggered in an object, its links

(for which the object is the sender) are scanned

and, for those associated to that event, the corre-

sponding actions are executed. The execution of an

action corresponds to a message sent to the receiv-

er. On the reception of a message, the new object

may trigger its own events, repeating the process.

On display objects, events are usually triggered as

a consequence of a user action. On data object-

s, events may be triggered by application speci�c

code or by the interaction component, but always

through messages.

The link, specially through its action component,

is therefore a programmable entity that has proved

to increase the degree of
exibility and reusability of

the di�erent components of the application. In fact,

since actions may specify any message, including or

not the sender's internal data, each component can

work autonomously, without explicit knowledge of

the other objects.

The 4D architecture de�nes a set of rules for ob-

ject interconnection restricting the establishment of

links, as shown in �g. 1. Basically, Data and Display

objects are not to be linked together, and in their

links, the action speci�cation is disabled. This stan-

dardises the connections made out of these objects,

which concentrates the de�nition of the speci�c be-

haviour of each interface in the Dialogue and Driver

components.

The de�nition of restrictions for component com-

munication is also present in the related models re-

ferred above (PAC and MVC). Nevertheless, the ex-

istence of a speci�c intercommunication component,

de�ning a selective and programmable communica-

tion channel is hardly found. Even MVC, which

de�nes the Model component as an active value, al-

lowing objects depending on it to be noti�ed when

a change occurs, uses a quite rigid protocol, where

the receptor is responsible to decode all the possible

noti�cations.

Methodology for composition

In the process of construction of interactive applica-

tions, a methodology for organising components is

a main requirement. In fact, as interfaces become

more complex and domain speci�c, the existence of

higher level abstractions, composed of simpler ele-

ments, eases the programmer's task.

Taking advantage of the adopted OO approach

and the de�nition of the above functional architec-

ture, the 4D architecture de�nes a methodology for

object composition. This methodology is special-

ly applicable when objects from di�erent categories

(sub-parts) are gathered in a composite object (en-

capsulator) which manages their behaviour, �ltering

the incoming messages and the de�nition of outgo-

ing links. Sub-parts, in this case, are usually not

visible outside the encapsulator.

Apart from the abstract principles that guide ob-

ject classi�cation into each 4D category, encapsula-

tion must obey the following rules:

1. Links emerging directly from the sub-parts to

objects outside the encapsulator follow the re-

strictions applied to both objects (sub-part and

encapsulator).

2. Incoming links can never specify actions direct-

ly in sub-part objects. Instead, the encapsula-

tor object may extend its interface and delegate

some of the incoming messages to its compo-

nents.

3. Display objects can only be composed into an

encapsulator display object. Since only display

objects can communicate with the interaction

system, it makes no sense to include objects of

this category in others.

The de�nition of a methodology for composition

includes the 4D architecture within the so called hi-

erarchical models like PAC (and unlike MVC). It

di�ers from PAC since in this one compositions are

restricted to the Control (Dialogue in 4D) compo-

nent, whereas in our architecture composition is ac-

tually centered in (but nor restricted to) the Display

component (Presentation in PAC).

3 Run-time support

The implementation of the above architecture re-

quires a run-time support for message exchange be-

tween objects. In fact, the concept of link, and spe-

cially its action part, can be easily mapped into a

general run-time invocation mechanism. The use of

4D objects in interactive applications, and in tool-

s supporting interactive programming, stresses this

requirement. We identi�ed the following services, to

be provided at run-time:

� a support for interpretation allowing creation,

customisation and identi�cation of objects.

These mechanisms provide a basis for experi-

mental programming [Sheil 86] and rapid pro-

totyping. Also, they should o�er the
exibility

required for the implementation of the link con-

cept.

� a mechanism for object storage and retrieval

that supports application saving and recovering

throughout the programming process.

� the ability to provide information about the

structure of objects and, in general, their pro-

gramming interface. This information can be

used for guidance purposes in interactive pro-

gramming tools, and may also provide support

for the other services.

The language level support

The choice of a language like C++ hardly matches

the above requirements. However, we chose it for

the sake of the openness and portability it provides.

According to this perspective, ICE4, a run-time

support for interpretation and storage/retrieval in

C++, has been developed. Its main services are:

Object identi�cation: enables the association of

user readable names to objects.

Object creation: provides a primitive for object

instantiation, independently of the class it be-

longs to. Since it bases its behaviour in class

constructors, the semantics of C++ object cre-

ation are kept.

Message invocation: allows the invocation of

member functions through a message like mech-

anism, using a common generic primitive,

maintaining the characteristics of the host lan-

guage. Namely, it provides the polymorphic

constructions of C++ (e.g. member overload-

ing) performing type checking at run-time be-

fore method execution.

4support for Interactive C++ Environments

Object storage/retrieval: allows object passiva-

tion and activation, supporting multiple exter-

nal representations, including C++ itself.

Except for the �rst service, that was implemented as

a set of fast access hash tables (referred to as name-

service), all the other are based in the existence of

type-objects. These objects are an extension of the

Smalltalk's class-object concept [Goldberg 83b], s-

ince they describe both classes and C++ primitive

types. Their basic role is to provide run-time type

information, uniform to all C++ types, enabling an

easy implementation of type-identi�cation and type-

checking mechanisms.

Class speci�c type-objects in particular, o�er ac-

cess to objects (method-objects) describing construc-

tors and member functions of each class. In cooper-

ation with these, type-objects implement the algo-

rithms for method lookup and provide the services

for object creation and message invocation. Per-

formance in these services is not actually a bottle-

neck. In fact, a \pre-compilation" option at run-

time can be performed, leaving a degradation of

about 4 times between a message invocation and

an C++ member function call.

Information about instance structure is also avail-

able, and used in the automation of the storage

and retrieval mechanism. This mechanism, how-

ever, is implemented in dedicated objects, named

io-objects, that, based on the instance description

obtained from type-objects, save and retrieve in-

stances according to the syntax and storage medi-

um they specify. This way di�erent io-objects can

save=retrieve the same instance using di�erent syn-

taxes and storage sources/sinks (e.g. �le, pipe, local

memory, ...).

Finally, ICE provides a common interface to most

of the above services, as shown in �gure 2. This in-

terface can be inherited by other classes deriving

from the IObject class, or simply through typed-

references, represented by IOID. This last form will

allow easy integration of existing code for which

class declarations can not be changed.

Besides the described services, ICE includes a

parser for C++ de�nitions, that generates code for

the static instantiation of type-objects and aggre-

gated method-objects. This simpli�es the integra-

findObject

recvMessage

create

type-objects

IObject / IOID

storeOn
retrieveFrom

IObject / IOID

Storage
Retrieval
Service

.......

......

.......

.............
.............

...... io-objectsname-service

Object
Identification
Service

Message
Invocation
Service

Object
Creation
Service

Object
Description
Support

query

Figure 2: The ICE services

tion of classes in ICE, and avoids the need for the

availability of class de�nition code.

Architecture speci�c support

Once the interpretation capabilities and stor-

age/retrieval mechanisms were provided, a basic

toolkit was developed, establishing the generic func-

tionality de�ned by the architecture. On this base,

more specialised classes were then implemented

(mainly integrating existing toolkits), providing the

components needed for the construction of interac-

tive applications.

The fundamental behaviour of 4D components are

de�ned on the 4DObj class. It provides the mecha-

nisms to establish links, verify and maintain lists of

links, trigger events, select them and executing the

associated actions. The validation of the actions

speci�ed for each link, and its execution, rely on the

ICE message invocation mechanism provided by the

IObject base class.

Structural composition of the 4D architecture is

obtained by de�ning four classes, derived from DOb-

j: DataObj, DriverObj, DisplayObj andDialogueObj.

An object belongs to a speci�c category if its class

inherits from one of these classes. Basically, they

constrain the establishment of links between com-

ponents as de�ned by the architecture.

4 Tools for Application Con-

struction

The 4D architecture and the ICE run-time provided

the support for the construction of two tools. The

�rst tool, INGRID5, is an interactive tool for us-

er interface construction, allowing rapid prototyp-

ing and incremental development. The second tool,

HypIngrid, is an open hypertext authoring system

that allows the creation of hypertext applications,

with a functionality very similar to HyperCard.

Both tools are characterised by its interactive or

interpretative nature, as well as by the requirements

for representation/interaction components, data ob-

jects with persistence attributes, dialogue de�nition

and encapsulation. Overall, they constitute an as-

sessment of the underlying concepts and functional-

ity.

4.1 INGRID

The INGRID tool is composed by a set of subtools

that address the construction of the several interface

components and their interconnection. The top-

level component is the Interface Organizer. It al-

lows global access to the interface objects, manages

the creation of links, and provides the interface to

global functions like save/retrieve, C++ code gener-

ation, on-line help, etc. Display objects can be cre-

ated and parameterised with the Display Editor

(�g. 3). The editor is divided in two areas: palette

and working space. These areas are the interface to

the instantiation and customisation operations. Ob-

ject parameterisation can also be performed through

class speci�c inspectors. The instantiation of Da-

ta,Driver and Dialogue objects is done through very

simple editors, that basically associate a user read-

able name to each created object.

INGRID and the 4D architecture

Ingrid is organised according to the model de�ned

in the 4D architecture. The de�nition of four cate-

gories, each one grouping objects with similar func-

tionality leads to the existence of four separated edi-

5
INteractive GRaphical Interface Designer

Figure 3: The INGRID Display Editor

tors, specially conceived according to the functional

role of each component.

The adoption of the 4D model for user interface

construction o�ers several advantages:

� A user interface can be de�ned by direct manip-

ulation of the available 4D objects. New objects

can be easily added and parameterised. Links

between the several objects can be established

so that they can communicate with each other,

according to their functional role.

The great advantage of the interactive be-

haviour of 4D objects is that it allows to de-

velop and test the interface without having to

compile it. Links between the objects can be

set, changed or deleted at run-time, changing

the application behaviour.

� Composition allows the de�nition of new classes

that organise simple components and can be

easily inserted in the INGRID tool.

� The Store and Retrieve functionality allows the

tool to save and recover the UI at any point of

its de�nition. Each object in the 4D toolkit

knows how to save and retrieve itself, including

links and references that it may have to other

objects.

INGRID and ICE

Besides the speci�c functionality of 4D objects, the

ICE facilities were intensively used by INGRID.

With the facilities described above, INGRID is able

to:

� Know the names of all the classes available in

the environment and instantiate new objects by

simply giving the class name.

This allows a new class to be easily added to

the tool. As an example, the integration of the

Motif widget set was done simply by generating

a new Display class for each widget. The new

Display classes where generated with auxiliary

tools and, once they were added to the ICE

environment, they could be used transparently

by INGRID.

� Know the names of all the methods de�ned by

a particular class. INGRID uses this run-time

information to build speci�c class inspectors for

object parameterisation and to send messages

to any UI object.

With this mechanism, the de�nition of the class

inspectors is performed with great
exibility

and independently of the class details, assuring

extensibility of the tool.

� Access any instance of a particular class in the

environment. INGRID uses this facility to es-

tablish links between UI objects, identify an ob-

ject's type, check type conformance and conver-

sion, and provide help about instance data and

member functions.

4.2 HyperCard on Unix

Once INGRID was available, we observed that it

could be easily modi�ed to produce an hypertex-

t authoring system, similar to HyperCard. In fact,

the visual characteristics of HyperCard were provid-

ed by the INGRID Display editor, the Data objects

of the 4D architecture are the components that en-

capsulate the introduction of persistence, and the

HyperCard scripting language could be handled as

a dialogue mechanism.

Functionality

HypIngrid supports the stack/card model. The ba-

sic node object is the card, and a collection of card-

s is called a stack. A stack contains a background

and several cards. A card may contain text, bitmap-

s, buttons, and �elds. Buttons may have links to

other stacks/cards or scripts associated to them.

A HyperTalk-like programming language was devel-

oped in order to write scripts that are associated to

buttons. An example of a card created with HypIn-

grid is shown in �g. 4.

Figure 4: An example of a HypIngrid card

The system provides a set of operations on these

objects, namely, interactive creation of texts, but-

tons and �elds on a card, creation and destruction of

cards and stacks, and also operations of movement.

Menu options allow to export/import a stack, edit

objects, perform search and sort operations, among

others.

Internal Architecture

The architecture of HypIngrid includes three com-

ponents: storage, management, and representation

of information:

� Information is stored using the SOHO6 system.

� The management system de�nes HypIngrid ab-

stractions and makes the interface to the rep-

6Storage Of Hypermedia Objects

resentation system. It also includes the parsing

and interpretation of the scripting language7.

� The representation system is responsible for the

manipulation of the graphical objects de�ned

by HypIngrid.

The development of this system explored the func-

tionality of existing components: The SOHO stor-

age system, the 4D Toolkit, and the INGRID inter-

face builder (�g. 5).

SOHO HypIngrid
Abstractions

4D
Data
Interface

4D Driver
& Dialogue
Connections

INGRID
Display
Editor

STORAGE DATA & ACTIONS REPRESENTATION

Scripting Language : HypIngridTalk

Figure 5: The HypIngrid architecture

HypIngrid and SOHO The SOHO system is

based on the HAM model [Campbell 88] and its ob-

ject oriented interface o�ers a set of hypertext ob-

jects: graph, context, node, and link. All of these

objects may have attributes attached to them. In-

ternally, SOHO is implemented using the sdbm li-

brary. HypIngrid de�ned the Stack, Background,

Card, Field and Button abstractions using these s-

torage facilities.

The HypIngrid Management Component

The HypIngrid abstractions were encapsulated into

4D Data objects, to be incorporated in the overall

application architecture.

This component is also responsible for the pars-

ing and execution of HypIngridTalk, the scripting

language that is a subset of HyperTalk.

One important aspect to consider is the storage

and retrieval of components like Cards. These op-

erations are rather transparent, and rely upon the

ICE and 4D functionality. In fact, Cards are saved

7Referred to as HypIngridTalk.

using the ICE external representation, together with

Xt resource �les, in SOHO nodes.

The HypIngrid Visual Interface The visual in-

terface of HypIngrid evolved from the INGRID Dis-

play Editor. INGRID provides a fairly high degree

of independence between its subtools. The adopted

strategy was therefore to reuse the Display Editor

in HypIngrid.

All the direct manipulation facilities o�ered by

the Display Editor apply now to the creation and

manipulation of HypIngrid objects. Some facilities

where added for stack import/export operations,

script editing, and expedite hypertext linking.

The overall result highlighted several advantages

of the approach. First, the openness of the system

allows the integration of other tools, like the audio

device of the Unix workstation, dedicated editors,

for text, drawings or images, or other specialised

processes.

Second, the graphical interface is also based on

generalised tools (Xt). This provides look and feel

compatibility with other applications. On the oth-

er hand, it is conceivable to extend the HyperCard

concepts with other objects like, for example, a Mo-

tif toggle to be used as a pin while navigating in the

hypertext document.

5 Conclusions and Future Direc-

tions

The fundamental conclusions we draw from the work

described in this paper are the following:

� Interactive applications and tools require a

comprehensive and open architecture to sup-

port functional partition and integration of

available components.

The comprehensiveness of the architecture fa-

cilitates the programming process by providing

a uniform object model for all the components,

and standardised interconnection mechanisms.

We believe that the 4D architecture is a good

step in this direction.

� The construction of interactive tools and sys-

tems requires support for interpretation and

rapid prototyping. This can be provided by the

language and programming environment (S-

malltalk [Goldberg 83b], Objective C [Cox 86])

or added through a run-time support system

like ICE. Although implying an extra e�ort,

it proved successful to design and implemen-

t such a run-time, given that we were able to

keep openness and easy integration with exter-

nal components.

� The facility of evolving the INGRID tool to a

hypertext/authoring system shows that there is

a common denominator in these family of tool-

s, which is implemented by the joint coopera-

tion of the architecture and the run-time. This

fact also suggests that further functionality of

the run-time and architecture should be made

generic and reusable across di�erent tools and

applications.

The future directions can be easily extrapolated

from the above conclusions. The promising direc-

tions are the extension of the architecture and the

extension of the run-time. Our goals are to extend

them in the following way:

� The purpose of the run-time is to support in-

teractive programming and rapid-prototyping.

Generic support for knowledge acquisition and

manipulation is a requirement for adaptive and

more intelligent user interfaces [Sullivan 91],

which makes it an important extension .

� The architecture can be extended to support

distribution. Promising experiences have been

made in this direction, [Antunes 91] opening

the way to a smooth transition to CSCW

[Greif 88] applications.

Acknowledgements

This work was supported partially by the Commis-

sion of the European Communities, under the Co-

mandos Esprit Project, and partially by JNICT, the

Portuguese National Board for Research.

References

[Antunes 91] P. Antunes, N. Guimar aes, and

R. Nunes. Extending the User In-

terface to the Multiuser Environmen-

t. European Conference on Comput-

er Supported Collaborative Work, C-

SCW Developers Workshop, Amster-

dam, September 91.

[Campbell 88] B. Campbell and J. Goodman. HAM:

A General Purpose Hypertext Abstrac-

t Machine. Communications of ACM,

31(7):856{861, July 1988.

[Carri�co 90] L. Carri�co, N. Guimaraes, and P. An-

tunes. INGRID : A Graphical Tool for

User Interface Construction. In Pro-

ceedings of the EUUG Spring Confer-

ence, Munich,, April 1990.

[Conklin 87] J. Conklin. Hypertext: An Introduc-

tion and Survey. IEEE Computer,

pages 17{41, September 1987.

[Coutaz 87] J. Coutaz. PAC : an Implementation

Model for Dialog Design. In Proceed-

ings of INTERACT'87, pages 431{436,

September 1987.

[Coutaz 90] J. Coutaz. Architecture Models for In-

teractive Software: Failures and Trend-

s. In G. Cockton, editor, Engineer-

ing for Human-Computer Interaction,

pages 137{153. Elsevier Science Pub-

lishers B.V, North-Holland, 1990.

[Cox 86] B.J. Cox. Object-Oriented Program-

ming - An Evolutionary Approach.

Addison-Wesley, 1986.

[Dodani 89] M. Dodani, C. Hughes, and J. Moshel-

l. Separation of powers. BYTE, pages

255{262, March 1989.

[Ellis 90] M. Ellis and B. Stroustrup. The Anno-

tated C++ Reference Manual. Addison

Wesley, 1990.

[Goldberg 83a] A. Goldberg. Smalltalk-80: The In-

teractive Programming Environment.

Addison-Wesley, 1983.

[Goldberg 83b] A. Goldberg and D. Robson. Smalltalk-

80: The Language and its implementa-

tion. Addison-Wesley, 1983.

[Gorlen 90] K. Gorlen, S. Orlow, and P. Plexico.

Data Abstraction and Object-Oriented

Programming in C++. John Wiley &

Sons, 1990.

[Greif 88] I. Greif. Computer Supported Collabo-

rative Work :A Book of Readings. Mor-

gan Kaufman Publishers, 1988.

[Guimaraes 91a] N. Guimaraes. INGRID: Interactive

Graphical Interface Designer. Tutorial

presented at the 5th Annual X Techni-

cal Conference, Boston, January 1991.

[Guimaraes 91b] N. Guimaraes, L. Carri�co, and P. An-

tunes. INGRID : An Object Orient-

ed Interface Builder. In Proceedings of

the TOOLS'91 Conference, Santa Bar-

bara, California, July 1991.

[Hartson 89] H.Rex Hartson and Deborah Hix.

Human-Computer Interface Develop-

ment:Concepts and Systems for its

Management. ACM Computing Sur-

veys, 21(1), March 1989.

[Harvey 88] G. Harvey. Understanding Hypercard.

Alameda, CA : SYBEX Inc., 1988.

[Myers 89] Brad Myers. User Interface Tools: In-

troduction and Survey. IEEE Software,

pages 15{23, January 1989.

[Sheil 86] B. A. Sheil. Power Tools for Pro-

grammers. In David R. Barstow,

Howard E. Shrobe, and Erik Sande-

wall, editors, Interactive Programming

Environments, chapter 2, pages 19{30.

McGraw-Hill, 1986.

[Sullivan 91] J.W. Sullivan and S.W. Tyler. Intelli-

gent User Interfaces. ACM Press, 1991.

[Young 89] D.A. Young. X Window Systems Pro-

gramming and Applications with Xt.

Prentice Hall, 1989.

[Young 90] D. Young. OSF/Motif Reference

Guide. Prentice-Hall, 1990.

