Ingrid - An Object Oriented Interface Builder

Nuno Guimaraes, Luis Carrico, Pedro Antunes
IST/INESC,
R. Alves Redol, 9, 6°., 1000 Lisboa, Portugal
e-mail: nmg@inesc.pt

Abstract

After a maturing process where models and archi-
tectures for User Interface Systems have been de-
fined and generally accepted, the current expecta-
tions of researchers, developers and users, are cen-
tered around user interface (UI) construction tools
incorporating rapid prototyping facilities.

This paper describes the approach taken in the
design and implementation of a system for interac-
tive UI construction. The INGRID system (INter-
active GRaphical Interface Designer), is based on
a comprehensive Ul architecture, a run time sup-
port providing interactive programming facilities in
C++, and a set of dedicated editors incorporating
direct manipulation techniques. The object oriented
approach is present, both in the design of the tool
itself, and in the proposed methodology for user in-
terface development.

1 Introduction

User Interface (UI) construction is currently a
clearly identified field in computer science and tech-
nology. As with any maturing technology, the
concepts and models have been converging to a
smaller set of alternatives [Hartson 89]. Standard-
ization steps have been tried in the supporting
technology for interactive systems and applications
[Scheifler 86], [OSF 89}, [Microsystems 88].

The current challenges and expectations seem to
be focused on the development of User Interface De-
velopment Systems (UIDS) that provide a suitable
environment for interactive construction, rapid pro-
totyping and, ultimately, usability by non program-
mers.

We believe that an efficient and productive envi-
ronment for the construction of interactive applica-
tions has to incorporate three orthogonal kinds of
functionality, a flexible and comprehensive user in-
terface architecture, object oriented techniques and
methodology, and rapid prototyping facilities.

This paper presents an environment for build-
ing user interfaces based on a generic object ori-
ented toolkit, a run-time support with interpre-
tation capabilities and an interactive construction
tool, called INGRID (INteractive GRaphical Inter-
face Designer) [Carricco 90,Guimaraes 91].

Background and Objectives The design deci-
sions taken in the definition of our environment were
inspired by early experience in the development of
the IMAGES User Interface Management System
(UIMS) [Simoes 87, [Marques 88b], [Marques 88a).
The UIMS was based on a proprietary Ul toolkit
and an interface specification language. The con-
clusions drawn from that work and the objectives of
our development were:

e To be successful in a real user community,
the UIDS must integrate widely available UI
toolkits like Xt [McCormack 88]. This assures
conformance with the “standardization” trends
and compatibility across multiple hardware and
software platforms.

T. Korson, V. Vaishnavi, and B. Meyer, Eds. Fifth International Conference on the Technology
of Object-Oriented Languages and Systems, TOOLS USA '91. Santa Barbara, California:
Prentice Hall, Englewood Cliffs, 1991, pp. 291-300. (ISBN: 0-13-923178-1).

paa
T. Korson, V. Vaishnavi, and B. Meyer, Eds. Fifth International Conference on the Technology of Object-Oriented Languages and Systems, TOOLS USA '91. Santa Barbara, California: Prentice Hall, Englewood Cliffs, 1991, pp. 291-300. (ISBN: 0-13-923178-1).

e The benefits of using a specification language
are a larger adequacy to the models defined for
the UI and a possible validation of the inter-
face definition before its execution. However,
from the interface programmer’s viewpoint this
is not a qualitative evolution. Instead, the ob-
jective is the development of tools that allow
interactive construction of the UI and minimize
the duration of the traditional programming cy-
cle. This approach may be questionable for
large software systems, where automation is a
more important goal, but is certainly adequate
for the small and medium sized applications of,
for example, office environments, where rapid-
prototyping and experimental programming is
most useful.

The definition and implementation of the UI con-
struction environment may be summarized in the
following steps:

e Choose the models for application and user in-
terface that will be presented to the user. These
are outlined in section 2. The object oriented
approach is an important initial decision, since
it enforces a particular design and construction
methodology.

e Create an environment for interactive program-
ming. This implies a thorough evaluation of the
linguistic aspects of the implementation envi-
ronment. If the implementation language al-
ready offers support for interpretation (Lisp,
Smalltalk) this step is avoided. If however, for
the sake of openness and portability, a language
like C++ [Stroustrup 85,Ellis 90] is chosen, ad-
ditional run-time support has to be built in.
Section 3 focuses on the run-time support sys-
tem that was developed.

e Materialize the above models in a set of inter-
related software components. Encapsulation,
reusability and extensibility requirements sug-

" gest that an object oriented approach is most
adequate in this design. The UI components
have to be well integrated with the interac-
tive programming environment while support-

ing the integration of existing UI software. Our
high level toolkit is described in section 4.

e Build tools for interactive construction of inter-
faces. Once the right UI components are avail-
able and support for their interactive manip-
ulation is available, dedicated tools or editors
may be developed. The major concern here is
to find the best direct manipulation techniques
and interface design that make Ul construction
an “easy” task. Section 5 gives a brief picture
of the existing tool. '

2 The models

The first decision in the design of the UI construc-
tion environment was the adoption of a set of models
to present to the users. These models include:

o A global model for the application.

e A model for the user interface component.

The notion of dialogue independence as defined
in [Hartson 89] is currently accepted by users and
designers of both Uls and UIDSs. An interactive
application is divided in a UI component and a com-
putational component.

The internal model for the Ul is however less sta-
ble. This model defines the different components
that should be considered within a UI and their
functionality. We considered that both a clear func-
tional separation between the interface elements and
an adequate design methodology were essential.

The functional model defines the UI components
according to their role in the several levels of the
interaction between user and application (presenta-
tion, dialogue and semantic support). This separa-
tion has been addressed by several models like Foley
[Foley 82,Foley 90], Seeheim [Green 85}, or the ref-
erence model [Lantz 87].

An object oriented approach, as a structuring
mechanism for the design of the Ul, provides the
correct methodology. Current UI toolkits and
UIMSs are unanimous in this issue, either by en-
forcing object oriented design through programming

conventions (Xt), by using extensions to procedu-
ral languages (Andrew [Neuwirth 88,Spector 88)),
or through the adoption object oriented languages
from the beginning (InterViews [Linton 87], ET++
[Gamma 88]).

We consider that this two-dimensional approach
(functional and architectural) To the modeling of
the Ul is a good answer to the questions concerning
design, implementation and execution of the user in-
terface. Examples are given by MVC [Goldberg 83a)
or PAC [Coutaz 87).

Semantic Dialogue | Presentation
Support
B
?‘, Driver output %‘
d 13
§ []paa Display || %
- %,
J s
~ »n
§ [l o] %
< ialog events Y

Figure 1: The 4D Model

The 4D model We called our model the 4D
model. The Ul is composed of objects which class
(type) belongs to one of four specific categories:

¢ Display — the presentation component
(input and output).
This category includes graphical objects such
as button, menu, scrollbar, and composite Dis-
play objects. A composite Display encapsulates
a collection of objects organized according to
the four concepts of the model. This compo-
sition originates a recursive model [Coutaz 89]
and introduces modularity in the UL In general,
Display objects encapsulate the representation
system which can be a graphical system but
also a set of multimedia devices (speech input,
audio output).

e Data — groups application abstract infor-
mation.
It provides general purpose data structures (in-
teger file list,...) with active values [Szekely 88],

ie. they automatically propagate their
changes. Data objects provide a clear interface
between UI and computational parts and intro-
duce semantic information on the UI side, sup-
porting semantic feedback [Dance 87]. More-
over, they may encapsulate additional facilities,
like persistence or distribution, that extend the
range of applications and systems that can be
built.

¢ Dialogue — maintains the syntactic struc-
ture of the interaction. '
The Dialogue category groups dialogue control
objects. The 4D model is intentionally unex-
plicit about the dialogue models to allow mul-
tiple implementations of dialogue control: dia-
logue languages, dialogue cells, etc.

e Driver — drives information between Data
and Display components.
Driver objects perform data conversion (such
as integer to string). Drivers introduce an extra
degree of flexibility by minimizing the needs for
new Data and Display objects.

Communication between objects is modeled
through the link concept. A link is a perma-
nent communication channel that carries messages
between objects. A difference between links and
method invocations is that an object, when send-
ing a message, does not require explicit knowledge
about the receivers (like their type or protocol, for
example) but uses only the outgoing links. This in-
creases the degree of flexibility and reusability by
providing a well defined and autonomous behavior
for a type of objects. The establishment of links
between ob jects follows the discipline illustrated by
the directions of the arrows in Figure 1.

The construction of an interface is the process of
creation and composition of objects belonging to
the different categories and the definition of links
between them. Figure 2 shows an example of an
application built according to this model. The in-
teraction of the user with the scrollbar generates
messages that are sent to the Dialogue object. The
Dialogue object invokes the Data object (Integer)
to update its value. Since Data objects have active

Driver Display
(DIntToString) (DLabel)
Data =t }
i 1
33 Display
(DScrolibar)
Dialog
(DCell)

Figure 2: An Example

values, the value change propagates to the linked
Drivers. Finally, Drivers convert the new value and
update the Label.

3 The run-time support system

The interactive creation, customization, and inspec-
tion of the objects that compose a Ul, requires the
availability of a complete run-time description of
those objects, together with interpretation capabil-
ities.

The ICE (Interactive C++ Environment) library
has been developed as a run-time system to support
interpretation in C++. Its main features are:

e Type information with type identifica-
tion, conformance and conversion testing, and
knowledge about instance data and member
functions.

e Communication by message based on the
available type information, provides a stan-
dardized paradigm of communication between
objects. Dynamic binding is an immediate con-
sequence of this communication paradigm.

e Object identification enables the assignment
of human readable names to objects, enforcing
a coherent mechanism of interaction between
the user and the programming entities.

e Object storage and retrieval again sup-
ported by the type interface description, en-
ables transparent storage/retrieval facilities.

¢ Interface uniformity offers an abstract han-
dling of objects, essential to ease the devel-
opment of flexible and programming environ-
ments, i.e. if all objects are accessible through
a common interface other types can be easily
integrated without code modification.

The basic concept of ICE is the notion of type-
object. It is an object that fully describes a
C++ type. A type-object is an extension of the
Smalltalk’s class-object concept [Goldberg 83b] to
the C++ basic types (char, int, float, ...), pointer
types and function types. The introduction of this
broader notion, enables an uniform, coherent, access
to the heterogeneity of C++ types. Type-related
mechanisms like storage or retrieval are available
both to user defined classes, and C++ basic types.

To have a complete functionality, an user-defined
class must have at run-time its type-object. Such
an object must contain very exhaustive information
for which even the availability of suitable macros
(as in ET++) require a large effort from the class
programmer. ICE includes a parser for C++ def-
initions, that automatically generates code for the
corresponding type-ob ject.

IObject
ICE Support \
IClass
T
DObj
D Baskes T
DataOby DriverObj DisplayObj DialogObj
Dinteger DintToString DDisplayXt DCDialog
4D Toolkit DFloat DFloatToString DLabel DCeoll
DString DFileToString DCommand DAction
DFile DOneToOne DBox DAnd
DProxy DOr

Figure 3: The 4D Classes

4 The 4D toolkit

The 4D toolkit provides a set of C++ classes (see
Figure 3) that are used to create the UL The first
levels of the inheritance hierarchy relate to the run
time support and to the generic functionality de-
fined by the 4D model. More specialized classes
provide the components available for user interface
construction.

Base Classes A base class, DObj, is defined to
support the 4D model, its components and links.
It defines a common behavior to establish, verify
and maintain lists of links, using links to send and
receive messages. Links rely on the ICE message
passing mechanism provided by the IObject base
class. Four classes are derived from DObj: DataObj,
DriverObj, DisplayObj and DialogueObj. An object
belongs to a specific component if its class inherits
from one of these.

Display classes Display objects have access to the
Window System. The consensus around the X Win-
dow System made available several graphical toolk-
its (Xt, Andrew, InterViews). The current imple-
mentation of the 4D toolkit uses Xt (and several
widget sets: Athena, Motif). This provides 4D with
features like system-independence, portability, net-
work transparency, multiple options of functionality
and “look and feel”. Furthermore, and since these
toolkits are often difficult to use, an independent
high-level access to its entities is already an advan-
tage.

One class, DisplayXt, defines the interface to the
Xtoolkit intrinsics. Another class, DisplayRoot, is
the root class in the display hierarchy. The other
Display classes bind to the specified widget sets (La-
bel, Command, ...) and are derived from DisplayXt.
Display classes are created automatically with the
help of parsing tools, and therefore no effort is re-
quired when, for example, a new widget set needs
to be integrated in the toolkit.

Data classes Data classes are currently simple
data types. However, following the same ap-
proach adopted for the automatic creation of Dis-

play classes, they may be complex data structures
like Tree, Matriz or Graph. A specialized Data class,
Prozy, interfaces with the computational component
of the application, acting as its representative in the
UI [Shapiro 86]. This object uses the ICE run-time
support to dynamically create its interface.

We believe that, in the future, the 4D Data classes
should be created automatically from available C++
class libraries, just as we currently do with Display
classes. This would enrich the toolkit and INGRID
significantly.

Driver and Dialogue classes Drivers are expected
to be dedicated objects for specific conversions.
However, functions like the X Converters may be
used to implement them. Dialogue objects are cur-
rently message handlers that can be composed to
perform the parsing of the message stream.

Save and Retrieve The capability of doing a
snapshot of the user interface run-time structure is
essential for interactive construction of the Ul The
Save/Retrieve facility has two concerns. The first is
related with the run-time structure within the 4D
model, mainly the created objects and their links;
The second is concerns the graphical parameteri-
zation of Display objects, and is related with the
widgets used internally by Display objects. In the
first case, the ICE run-time information is sufficient
to produce a snapshot; in the second, a database
with graphical information must be generated, us-
ing the facilities provided by the X Window System
(X Resource Management).

5 The INGRID Tool

The final step in the implementation of our Ul con-
struction environment is the development of the in-
teractive construction tool. We considered the fol-
lowing issues as fundamental in the design and de-
velopment of such a tool:

¢ Direct manipulation
Direct manipulation is well adapted to the in-
teraction with a UI construction tool, namely

Figure 4: The Organizer and the Data,Driver and Dialogue Editors

when the graphical part of the Ul is being han-
dled. It is however difficult to apply to general
purpose object customization e.g. parameteri-
zation of the attributes of a data object. The
solutions to adopt in this case should not limit
the interactive nature of the tool/.

Model enforcement

The importance of a flexible model for a Ul
has been stressed in the beginning. The Ul
construction tool enforce it during the process
of UI construction, providing directions to the
user building the interactive application.

Multi-threaded interaction

The ability for the user to interrupt an action,
execute another and return to the conclusion of
the first, ought to be supported by the tools.

Binding to the computational component
The result of a working session is a set of
files that describe the UI. However, mecha-
nisms must be provided to define the binding
to the computational part of that application.
Those mechanisms offer a flexible front-end
that supports connections to multiple program-
ming languages without requiring language spe-
- cific knowledge from the Ul programmer. Be-
sides C++ and C, binding to the computational
part should also be available through languages
like Pascal or Lisp.

¢ Help and guidance

The flexibility provided by an interactive tool,
with direct manipulation of multiple Ul enti-
ties, may present to the designer a very large set
of options. Help and guidance have to be pro-
vided throughout the UI construction process,
either by pointing the most adequate solution,
defining a structured approach to the interface
organization coherent with the model, or even
by limiting the choices to the ones valid in the
current context.

According to these requirements, the interactive
programming goals and the 4D model and toolkit,
we considered that the INGRID tool should incor-

porate five components:

¢ Interface organizer The interface organizer

allows global access to the interface objects (see
fig. 4). It is the front-end of INGRID. The or-
ganizer manages the creation of links between
Ul objects, and provides the interface to global
functions like Ul store/retrieve, C++ code gen-
eration, on-line help, etc.

Display editor This editor handles objects
with display properties, like position, size, text
and bitmaps. The editor is divided in three
areas: palette, canvas, and attribute program-
mer. These areas are the interface to the instan-
tiation, placement and parameterization oper-

Figure 5: The Display Editor and the Inspector of a DCommand

ations (see fig. 5). Object customization is per-
formed through class specific inspectors.

As mentioned before, the Display classes are
generated automatically generated from Xt
widgets with auxiliary tools. The same hap-
pens with the inspectors, which are generated
automatically from the available type informa-
tion. This functionality makes it very easy to
integrate a new widget set. Currently, we sup-
port the Athena and the OSF/Motif 1.1 widget

sets.

Data editor Data objects represent abstract
structures used by both the interactive and
the computational components of the applica-
tion. The Data editor provides an identifica-
tion mechanism that associates a user-readable
name to each object. Later, these objects can
be selected from a menu of created instances.
Instantiation and parameterization can also be
performed from menus that refer to the 4D
toolkit Data classes.

» Driver editor The nature of Driver objects
difficults the use of a direct manipulation
paradigm adapted to their parameterization.
In this case, menus allow instantiation, and pa-

rameterization. The identification mechanism
is similar to the one used for Data objects.

¢ Dialogue editor The dialogue editor depends
on the dialogue control model that is provided
by the underlying toolkit. Our first approach
defines an object oriented event driven dialogue
for which an event or a sequence of events ar-
riving to an object may trigger a pre-defined
action. The dialogue can be represented as a di-
rected graph, suitable for interactive program-
ming using direct manipulation techniques.

6 Related and Future work

The architecture and components of our interface
construction environment are closely related with
existing systems. Smalltalk-80 [Goldberg 83b] has
been an inspiration for the object oriented approach
and much of the run-time support system.

We believe that object oriented design method-
ologies and interactiveness have to be provided in
the current Unix workstation environments based
on “standard” and widely available UI technologies
(namely X and Xt). ADEW [Neuendorfer 91] and
the NeXT Interface Builder [Webster 89] are two

good examples of object oriented tools designed for
the workstation environment. Their adoption im-
plies however a definite choice of a programming
environment and UI style.

Several UI development tools specifically designed
to build interfaces with Xt widget sets have been
reported [Sall 91], [Foody 91]. Several design and
architectural decisions presented by these tools are
significantly close to our own decisions (the editor
approach, the interpretation capabilities, the exter-
nal representation mechanisms). We stress however
that, although our current implementation is based
on Xt, some degree of independence from the toolkit,
or at least, an indirection or encapsulation level, is
important. Moreover, the construction of the Ul has
to consider the other components, namely dialogue
and binding to the computational component of the
the application.

Future Directions The user interface architec-
ture that supports INGRID can be extended in sev-
eral ways. One of them is the introduction of global,
persistent and shared Data objects, supported in the
Comandos platform [Marques 89,Guedes 89}, or of
replicated Data objects, bases in a platform such as
Isis [Birman 90]. This evolution may provide facil-
ities for building applications that manipulate per-
sistent information without explicit programming of
the access to storage systems, and for construction
of multiuser or CSCW (Computer Supported Col-
laborative Work) [Greif 88] applications.

On the other hand, the architecture and tool pro-
vide a comprehensive framework for the develop-
ment of specialized tools, that do not manipulate
general purpose user interface ob jects but rather do-
main specific components. In fact, domain specific
toolkits may be derived from the base 4D classes
and inherit all the interactive manipulation facili-
ties. One example of a set of components is a hyper-
media toolkit developed according to the same prin-
ciples [Guimaraes 90], [Puttress 90]. The evolution
of the system in this direction will provide tools for
construction of domain specific applications, which
we can refer to as CASE tools.

7 Conclusions

We believe that interactive tools are a good solu-
tion for User Interface construction in the context of
applications and programming environments where
experimentation is envisaged. Moreover, these tools
have to be as open as possible, to cope with tech-
nology changes and evolution.

The consideration of three components in the user
interface construction environment seems to be ade-
quate, both to satisfy the functionality requirements
and to ease the implementation process:

e The user interface model covers the essential
aspects of the user interface and its object ori-
ented nature provides a correct design method-

ology.

o The effort spent in the development of a run-
time support system for C++ proved to be
rewarding, given the degree of openness and
compatibility with existing software that is
achieved.

o The 4D toolkit, as an high level toolkit, is
an interesting solution to encapsulate and inte-
grate discrete components behind a normalized
and generic interface. Further exploitation of
this encapsulation role is expected to provide a
much richer set of tools.

e The adequate exploitation of the object ori-
ented design and implementation guidelines has
proven extremely useful to achieve all these ob-
jectives.

Acknowledgements

This work was supported partially by the Commis-
sion of the European Communities, under the (Co-
mandos Esprit Project), and partially by JNICT,
the Portuguese National Board for Research.

References

[Birman 90] K. Birman, R. Cooper, T. Joseph, K.
Marzullo, M. Makpangou, K. Kane,

F. Schmuck, and M. Wood. The ISIS

[Carricco 90]

[Coutaz 87]

[Coutaz 89]

[Dance 87)

[Ellis 90]

[Foley 82]

[Foley 90]

[Foody 91]

[Gamma 88]

[Goldberg 83a]

System Manual, Version 2.0. Techni-
cal Report, The ISIS Project, Dept.
of Computer Science, Cornell Univer-
sity, Ithaca, September 1990.

L. Carrico, N. Guimaraes, and P.
Antunes. INGRID : A Graphical
Tool for User Interface Construction.
In Proceedings of the EUUG Spring
Conference, Munich,, April 1990.

J. Coutaz. The Construction
of User Interfaces and the Ob-
ject Paradigm. In Proceedings of
ECOOP’87, pages 121-130, June
1987.

J. Coutaz. Architecture Models for
Interactive Software. In ECOOP’89,
Proceedings 3rd European Conf. on
Object-Oriented Programming, Not-
tingham, July 1989.

J.R. Dance. The Runtime Struc-
ture of UIMS-Supported Applica-
tions. Computer Graphics, 97-101,
April 1987. /

M. Ellis and B. Stroustrup. The An-
notated C++ Reference Manual Ad-
dison Wesley, 1990.

J.D. Foley and A. Van Dam. Fun-
damentals of Inleractive Compuler
Graphics. Addison-Wesley, 1982.

J.D. Foley, A. Van Dam, Steven
Feiner, and John Hughes. Computer
Graphics - Principle and Practice.
Addison-Wesley, 1990.

M. Foody. UIM/X : A GUI Builder
for Motif or OPENLOOK. Tuto-
rial presented at the 5th Annual X
Technical Conference, Boston, Jan-
uary 1991.

E. Gamma, A. Weinand, and R.
Marty. ET++ - An Object Oriented
Application Framework. In Pro-
ceedings of the Autumn 1988 EUUG
Conf., Portugal, pages 159-173, Oc-
tober 1988.

A. Goldberg. Smalltalk-80: The In-
teractive Programming Environment.
Addison-Wesley, 1983.

[Goldberg 83b]

[Green 85}

[Greif 88]

[Guedes 89]

[Guimaraes 90]

[Guimaraes 91]

[Hartson 89]

[Lantz 87)

[Linton 87)

[Marques 88a]

A. Goldberg and D. Rob-
son. Smalltalk-80: The Language and
ils implementation. Addison-Wesley,
1983. ‘

M. Green. Report on Dialogue Spec-
ification Tools. In User Interface
Management Systems , G.Pfaff (ed.),
pages 7-20, Springer Verlag , Berlin,
1985.

I. Greif. Computer Supported Col-
laborative Work :A Book of Readings.
Morgan Kaufman Publishers, 1988.

P. Guedes and J.A. Marques. Oper-
ating System Support for an Object-
Oriented Environment. In Proceed-
ings of the 2nd IEEE Workshop
on Workstation Operating Systems,
Asilomar, September 89.

N. Guimaraes. HOT: a Generic Hy-
permedia Toolkit. In Proceedings
of the TOOLS’90 Conference, Paris,
June 1990.

N. Guimaraes. INGRID: Interactive
Graphical Interface Designer. Tuto-
rial presented at the 5th Annual X
Technical Conference, Boston, Jan-
uary 1991.

H.Rex Hartson and Deborah Hix.
Human-Computer Interface Develop-
ment:Concepts and Systems for its
Management. ACM Computing Sur-
veys, 21(1), March 1989.

K. Lantz. Reference Models, Window
Systems and Concurrency. Computer
Graphics, 87-97, April 1987.

M. Linton, P. Calder, and J. Vlis-
sides. InterViews: A C++ Graphical
Interface Toolkit. In Proceedings of
USENIX C++ Workshop , Sania Fe,
November 1987.

J.A. Marques, L.P. Simoes, N.
Guimaraes, Luis Carrigo, and M. Se-
queira. Images - An Approach to an
Object Oriented UIMS. In Proceed-
tngs of the Autumn 1988 EUUG Con-
ference, October 1988.

[Marques 88b]

[Marques 89]

[McCormack 88]

[Microsystems 88]

[Neuendorfer 91]

[Neuwirth 88]

[OSF 89]

[Puttress 90]

[Sall 91]

[Scheifler 86]

J.A. Marques, L.P. Simoes, and
N.Guimaraes. A UIMS and Inte-
grated Environment for the Somi
Workstation. In Proceedings of
the ESPRIT’88 Conference, Brus-
sels, pages 1001-1019, North Holland,
November 1988.

J.A. Marques and P. Guedes. Ex-
tending the Operating System to
Support an Object-Oriented Environ-
ment. In Proceedings of OOPSLA’89,
ACM, New Orleans, October 89.

J. McCormack, P. Asente, and R.
Swick. X Toolkit Intrinsics - C Lan-
guage Interface. 1988.

Sun Microsystems. The Open Look
GUI Functional Specification, Pre-
Release. Sun Microsystems, July
1988.

T. Neuendorfer. ADEW: Building
Applications in an Embedded Object
Environment. Tutorial presented at
the 5th Annual X Technical Confer-
ence, Boston, January, 1991.

C. Neuwirth and A. Ogura. The An-
drew System Programmer’s Guide to
the Andrew Toolkit ITC. Technical
Report, Carnegie-Mellon University,
January 1988.

OSF. Motif Style Guide, Revision
1.0. Open Software Foundation,
Cambridge, MA, USA, 1989.

J.J. Puttress and N. Guimaraes. The
Toolkit Approach to Hypermedia. In
A. Rizk, N. Streitz, and J. Andre,
editors, Hyperiext: Concepls, Sys-
tems and Applications, Proceedings of
ECHT’90, Paris, pages 25-37, The
Cambridge Series on Electronic Pub-
lishing - Cambridge University Press,
November 1990.

K. Sall TAE Plus, a NASA-
developed User Interface Design Tool.
Tutorial presented at the 5th Annual
X Technical Conference, Boston, Jan-
uary 1991.

R. Scheifler and J. Gettys. The X
Window System. ACM Transactions
on Graphics, 5(2):79-109, April 1986.

[Shapiro 86]

[Simoes 87]

[Spector 88]

[Stroustrup 85]

[Szekely 88]

[Webster 89]

M. Shapiro. Structure and En-
capsulation in Distributed Systems:
the Proxy Principle. In Proceedings
6th Intl. Conf. on Distributed Com-
puting Systems ,JEEE Cambridge ,
Mass.(USA), pages 198-204, May
1986.

L.P. Simoes and J.A. Marques. Im-
ages - an Object Oriented UIMS.
In in Proceedings of Interact’87
Human-Computer Interaction, IFIP,
H.Bullinger , B.Shackel (eds) , North-
Holland, August 1987.

A.Z. Spector and J.H. Howard. An-
drew. Selected Papers from the
Usenix Winter Conference 1988, Dal-
las, December 1988.

B. Stroustrup. The C++ Program-
ming Language. Addison-Wesley,
1985.

P.A. Szekely and B.A. Myers. A User
Interface Toolkit based on Graphi-
cal Objects and Constraints. In Pro-
ceedings of OOPSLA’88 Conference,
pages 36—45, September 1988.

B.F. Webster. The NeXT Book.
Addison-Wesley, 1989.

