
Electronic version of an article published as [International Journal of Information Technology & Decision
Making, 11(6), 2012, pp. 1065-1085] [DOI: 10.1142/S0219622012400159] © [copyright World Scientific
Publishing Company] [http://www.worldscientific.com/worldscinet/ijitdm]

1

COLLABORATION AND CONFLICT IN SOFTWARE REVIEW
MEETINGS

GIOVANA B. R. LINHARES

Graduate Program in Informatics (PPGI), Federal University of Rio de Janeiro,
Rio de Janeiro, RJ 20010-974, Brazil

giovana_linhares@hotmail.com

MARCOS R. S. BORGES

Graduate Program in Informatics (PPGI), Federal University of Rio de Janeiro,
Rio de Janeiro, RJ 20010-974, Brazil

mborges@nce.ufrj.br

PEDRO ANTUNES

Faculty of Sciences, University of Lisbon, Campo Grande,
Lisbon, 1749-016, Portugal

paa@di.fc.ul.pt

Received (Day Month Year)
Revised (Day Month Year)

Communicated by (xxxxxxx)

This paper discusses the collaboration-conflict process: a binomial process mixing collaboration and
conflict. We applied the collaboration-conflict process to Software Review Meetings, commonly
adopted to verify the functional specification of software. We developed a groupware tool
demonstrating the dynamics of the collaboration-conflict process in review meetings. We also
provide results from an experiment with the tool in a software engineering firm. The results show
that the collaboration-conflict process promotes argumentation and generates better reviews.

Keywords: Review Meetings, Negotiation, Collaboration-conflict Process.

1. Introduction
Software Review Meetings (SRM) are recommended quality assurance
activities in software engineering.1 SRM involve designers, developers
and testers in the verification of software at various points in the product
development lifecycle. They allow determining if a product is being
developed with quality and consistency with the specifications, i.e. it
supplies the right solution to the requirements specified by the client.

In spite of common corporate goals, the participants in SRM often
develop conflicting perspectives, interpretations and positions regarding
the product quality. This type of conflict justifies the collaboration-conflict

2 Linhares, Borges, Antunes

process: a process integrating conflict management in collaboration. We
thus have, on the one hand, the review activity that has to be fulfilled by a
group of persons and, on the other hand, the collaboration-conflict process
necessary to accomplish the review activity with success.

Groupware may simultaneously support SRM and collaboration-
conflict processes. Unfortunately, resolving conflicts and getting to
consensus is a complex problem. One major intricacy is dealing with the
main assumptions behind conflict resolution: (1) the interlocutors have
diverse profiles, interests, viewpoints, and strategies that should be
respected and often promoted to reach high-quality results; (2) in this
context, reaching consensus requires a collective cognitive effort to
understand the different positions and negotiate acceptable solutions; and
(3) the process should be simultaneously fast and thorough, two goals that
are often difficult to reconcile.

Many groupware systems emphasize collaboration to the detriment of
conflict management, for instance adopting a strict focus on participation
and shared information. Such an approach may however fail, either
because conflicts may remain dormant, just to arise later; or they may
escalate to unacceptable levels, making it more difficult if not impossible
to accomplish the corporate goals without explicit negotiation. It is
therefore necessary to balance collaboration and conflict.

The problem discussed in this paper concerns the lack of collaboration-
conflict balance observed in the current groupware tools.2 Our research
tries to supplant this lack of balance by integrating models of collaboration
and conflict. This research guided the development of a groupware tool
supporting SRM in the Functional Specification phase.

The adopted research approach is based on the Design Science
paradigm.3 This problem-solving paradigm has its roots on engineering. It
seeks to understand how technology may contribute to solve specific
problems in particular domains. The Design Science paradigm emphasizes
two main research goals: (1) establishing relevance through the
identification of requirements and field-testing of concrete solutions,
which in our case is accomplished by the FTR tool; and (2) establishing
rigor by grounding the technology development in solid conceptual
foundations, which in our case concerns the collaboration-conflict model.

The paper is organized in six sections. In Section 2 we discuss the
research’s theoretical foundations. In Section 3 we describe the
collaboration-conflict process. Section 4 describes the developed
prototype. Section 5 describes an experiment carried out with the

Collaboration and Conflict in Software Review Meetings 3

prototype. And finally Sections 6 and 7 present some points for discussion
and the conclusions from this research.

2. Theoretical Foundations

2.1. Behavioral foundations of software review meetings
Many recent software development approaches emphasize participation
and collaboration as critical to improve performance. Examples include
agile4 and open source5 software development. SRM follow the same
assumptions, relying on collaboration to improve the early detection and
correction of defects in software development.6

SRM involve groups of experts, following formal procedures and
designated roles, in the discovery of discrepancies between software
specifications and other software documents, standards, and best
practices.7 Johnson8 found out that these discrepancies can be one or two
orders of magnitude less costly to remove when found in early
development stages than after being released to customers; and also
realized that SRM are effective in discovering certain soft, but
nevertheless costly, defects such as logically correct but poorly structured
code.

In accordance with the International Software Testing Qualifications
Board, the roles and responsibilities involved in SRM include:6

• Manager: Has responsibility for the final decisions;
• Moderator: Is responsible for the success of the review meeting. Leads

the meeting and balances the discussions. Whenever necessary, also
arbitrates conflicts;

• Authors: Submit software artifacts for review and explain and justify
their decisions;

• Reviewers: Identify, analyze and question the defects found in the
artifacts under review;

• Secretary: Documents what happens in the review meeting, registering
the defects and final decisions.
D’Astous et al1 conducted observational studies to identify and

characterize the predominant configuration of exchanges associated with
SRM: 1) solution-elaboration; 2) solution-evaluation; 3) solution-
evaluation-elaboration; 4) proposition-opinion; and 5) opinion-arguments.
This indicates that both conflict (negative evaluation) and collaboration
(elaboration of an alternative solution) play an important role in SRM.

4 Linhares, Borges, Antunes

2.2. Collaboration-conflict model

Abstracting from the patterns observed by D’Astous et al,1 we may define
a behavioral model underlining two very distinctive behaviors:

• Conflictive: When reviewers assert negative evaluations of solutions
proposed by the authors. When authors and evaluators provide negative
opinions regarding the others’ propositions.

• Collaborative: When reviewers seek to compensate negative evaluations
by elaborating upon solutions or proposing new solutions. When
authors and evaluators provide positive opinions regarding the others’
propositions.
These behaviors define the collaboration-conflict spectrum of the

exchanges between reviewers and authors in SRM. Of course the
participants may continuously change from one behavior to another along
the review process. Though what should be noted is that, depending on the
contingencies of the specific situation, these behaviors may be equally
supportive and harmful to the quality of the SRM outcomes.

For instance, excessive collaboration may lead to groupthink, which
has been considered detrimental to the decision quality.9,10 Also,
extremely conflictive behaviors may lead to unsuccessful review
meetings. Interestingly, dealing with conflict has been considered a way to
avoid groupthink11 and collaboration is also a viable way to overcome
conflict. Thus the two behaviors may actually be necessary to improve the
SRM quality.

Our model is based on the assumption that (1) review meetings should
not gravitate towards being strictly collaborative or strictly conflicting but
instead should reflect the whole spectrum of behaviors. The model also
considers that (2) both collaboration and conflict should be stimulated
in particular circumstances, since they are necessary to counterbalance the
negative effects of each other.

Fricker and Grünbacher12 distinguish between single-party groups,
which are highly cohesive and thus pursue the same goals, and multiple-
party groups, which appear on different sides of the table. Multiple-party
groups may be further classified as differentiated, homogeneous and
collaborating. The former compete between each other, while
homogeneous groups have the same aspirations but different opinions, and
collaborating groups seek an agreement that may be beneficial to all group
members. Thus in our behavioral model we should also consider that (3)
collaboration and conflict may emerge at different grades, from

Collaboration and Conflict in Software Review Meetings 5

cohesive to differentiated, homogeneous and collaborating. Research in
conflict resolution has found out that the adopted strategies depend on
various factors such as personal style, gender, organizational influences
and culture.13 This reinforces the argument that collaboration and conflict
should coexist in SRM, and that no particular predisposition to benefit one
over the other should be adopted.

2.3. Computational support to the collaboration-conflict model

Thomas14 considers that beyond behavioral predispositions, cultural
factors and social pressures, the adoption of collaborative and conflictive
behaviors may be influenced by rules, procedures and incentive structures.
We ponder that, by controlling these elements, technology may explicitly
influence human behavior in SRM. We may distinguish the following
types of influence:

1. Using technology to manage the process;
2. Using technology to intervene in the process as a facilitator or

mediator.
3. Using technology to develop incentive mechanisms that promote the

process quality.
Exemplary of the first type, we find Online Dispute Resolution

systems, which manage the definition of goals, preferences, offers and
counteroffers, and settlements.15-17 In the second type we find intelligent
mediation tools.18-21 They employ automatic or semi-automatic
mechanisms to monitor activity, identify problems with participation, and
to assist their resolution through human interventions and information
management mechanisms.

The WinWin negotiation model for requirements inspection22 has
applied intelligent mediation to SRM, offering mechanisms to detect
software defects like missing capabilities and hidden requirements, and
promoting agreements using brainstorming, categorizing and polling tools.

The third type addresses the collaboration-conflict model in more
subtle and diverse ways than the previous ones, using technology to
influence the participants’ behaviors but without explicit control. Within
this category we may find several technology-designed mechanisms:

• Providing awareness of conflicts.23,24
• Supporting conflict detection and traceability.25
• Visualizing preferences and settlement spaces.26,27

6 Linhares, Borges, Antunes

• Promoting knowledge exchange and alternative problem/solution
representations.28

• Promoting certain positive values such as anonymity, constructive
criticism, participation and consensus.29-31

• Detecting and discouraging certain malicious acts.32

Some of these incentives have been used with success in
crowdsourcing systems like the Wikipedia and open source software
development.33,34 For instance, Wikipedia offers talk pages and
controversial tags to facilitate conflict resolution.33 Also in the software
engineering field, Ramires et al30 experimented several mechanisms to
promote consensus in software requirements validation, supporting
multiple individual preferences, consensus solutions, and also rating users
according with their conflictive or collaborative behaviors.

3. The Collaboration-Conflict Process
In this section we elaborate the collaboration-conflict process, which
provides a particular implementation of the model discussed in the
previous section. This implementation is necessary to evaluate the model
assumptions.

We conceptualize the collaboration-conflict process as a combination
of three functions: (1) review, (2) negotiation, and (3) argumentation. Let
us now elaborate these functions in detail. Words in bold call the attention
to key concepts.

Review. The review meeting may be characterized according with the
following phases:

• Review statement: What triggers the meeting, consisting of a list of
review items such as specification documents and programming code.

• Scores: In this phase, the participants give scores to the review items.
We currently support three scores: accept, reject and accept with
restrictions. This phase may involve negotiation (described below).

• Decision: After assessing the various review items, a decision must be
made about the review. This final phase involves analyzing the scores
given to each review item, equating their impact on the overall review
and determining if the review fails or succeeds.

Negotiation. The negotiation phase is prompted by conflicts. There is a
conflict when two or more reviewers give different scores to a review
item. A conflict should only be resolved through negotiation. Multiple

Collaboration and Conflict in Software Review Meetings 7

negotiations may occur during a review. A negotiation evolves according
with the following steps:

• Proposals: In the first step, the different scores given to a review item
are treated as negotiation proposals submitted to the participants.

• Search for consensus: The participants have to reach a final score for
the item. This step may require argumentation (described below).

• Closure: A negotiation is closed when a final score is defined for a
review item.

Argumentation. The search for a final score may require the
confrontation of arguments. We adopted an argumentation model based on
the Issue Based Information System35 model, which has been used in
software engineering to capture design rationale.36-38 The argumentation
model defines the following elements:

• Positions: Several positions are expressed in favor or against a
proposal. The positions are automatically inferred from the scores
attributed by the participants to the review items (for instance, the
participants that gave a reject score are against the participants that gave
an accept score and vice versa).

• Arguments: Concise pieces of text giving strength to positions. In
order to enforce argumentation, the participants are requested to
complement the reject and “accept with restrictions” scores with
arguments.
Notice that the review, negotiation and argumentation activities are

entangled and concurrently executed. The data model of the collaboration-
conflict process is organized around the various elements identified above:
review statement, review item, score, final score, proposal, position,
argument and decision. Figure 1 depicts this model.

8 Linhares, Borges, Antunes

Fig. 1. Data model of the collaboration-conflict process

We also observe that the goal of the collaboration-conflict process is
not necessarily to obtain consensual scores for every review item. Several
rules may be defined regarding what results should be drawn from the
individual scores. The following rules may be considered: majority voting,
where the final score is determined by the majority of the participants;
consensus voting, i.e. there is only a result if it corresponds to the same
score selected by all participants; and manager decision, where the
manager decides the final score based on the participants’ scores.

After obtaining the final scores, the whole review statement should be
subject to a final decision. Again, several rules may be adopted to reach
the final decision. We adopted the following types of decisions in our
implementation: (1) full acceptance, when all participants accept; (2)
general reject, if there is at least one reject; (3) postpone, if there is more
than a predefined number of accepts with restrictions; and (4) general
acceptance otherwise.

3.1. Factors affecting the process

Every collaboration-conflict process, although structured according with
the phases previously described, has its own dynamics and depends on a
set of factors that interact between themselves, interfering with the process
outcomes. We highlight the following contextual factors:

• Level of conflict - As the level of conflict increases, so does the
cognitive effort necessary to negotiate and argue. At the limit, a
destructive level of conflict will lead to a failed process. The number of

Collaboration and Conflict in Software Review Meetings 9

suggested proposals, positions and arguments may serve to measure the
level of conflict.

• Number of participants - A large number of participants may also turn it
more difficult to negotiate.

• Status differences - Status differences address the dependence
relationships between leaders and subordinates. Groups having status
differences may be negatively affected by the dependence on people
with more power.39 The balance between the participants’ proposals,
positions and arguments may serve to measure the effects of status
differences.

• Problem involvement - A low involvement with what is under
discussion may turn it more difficult to participate in the process. The
number of suggested proposals, positions and arguments may serve to
measure the problem involvement.

• Group expertise - The lack of expertise about the problem under
discussion may also affect the process outcomes. This factor may be
measured by assessing the quality of the presented arguments.

3.2. Quality criteria for assessing the process

It is fundamental to define quality criteria for assessing the collaboration-
conflict process. However, the selection of criteria is quite challenging.
Let us consider, for example, a situation where a decision is immediately
reached after a small number of proposals; and contrast it with another
situation in which, after a long argumentation, several proposals were
discussed.

We may assume the first case has low quality while the second case has
high quality. This assumption may however be misleading. For instance, it
is possible that the first case has low complexity and relevance, and the
adopted decision is not only adequate but also efficient. On the contrary,
the second case may correspond to a situation where conflicts may have
lead to a suboptimal decision, having the additional cost of spending too
much time to finish the process.

When considering negotiation processes, quality has been
fundamentally associated with efficiency. For instance, the distance
between the agreed solution and the best possible solution that could be
obtained by continuing the process, designated value-left-on-the-table, is
commonly used to evaluate the quality of negotiation processes.40 This
approach is however more adequate to bargaining than to collaboration-

10 Linhares, Borges, Antunes

conflict, since the former is influenced by the zero-sum game while the
later is more influenced by “satisfying” trade-offs.41

When considering collaboration processes, quality tends to be
measured according with a diverse set of variables categorized as
efficiency, effectiveness, satisfaction, and consensus.42 This suggests the
quality of collaboration-conflict processes should be measured according
with a combination of criteria, for which we suggest:

• Efficiency - Time to complete the task.
• Flexibility - Number of positions changes to converge with the

majority.
• Contribution - Number of arguments produced by the participants.

4. FTR Tool
This section describes the tool we developed to support the process
described in Section 3. We first describe the specific requirements of the
groupware tool and associate those requirements with the particular
characteristics of the collaboration-conflict process. We then describe the
tool’s architecture and interface.

4.1. Addressing the collaboration-conflict model
One fundamental characteristic of the FTR Tool is making the
collaboration-conflict process explicit to the participants. It is not enough
to manage messages exchange according with the typical tags like topics,
contents, authors, etc. Specific tags are necessary to position messages
within the collaboration-conflict spectrum.

To illustrate the problem, consider that messages exchange is supported
through a typical e-mail tool. The tool preserves the exchanged messages
in their temporal order, but the collaborative and conflicting behaviors are
not easy to discriminate and follow. This is particularly true with
asynchronous interaction.44 As participants tend to mix several types of
contributions into a single message, it is not easy for a remote participant
to keep track of the interventions according with the collaboration-conflict
continuum, which means the participants have to overcome this ambiguity
by constantly assessing and reassessing the messages’ contents.

To reduce these problems, the FTR Tool adopts the argumentation
model described in Figure 1. This model assures that exchanges messages
may be tracked according with relevant criteria like positions in favor or
against and arguments.

Collaboration and Conflict in Software Review Meetings 11

It is also important to give the moderator an overall view of the
participants’ contributions according with the collaboration-conflict
continuum. The FTR Tool addresses this issue with a participameter.41
Table 1 summarizes the participameter information collected by the FTR
Tool and delivered to the moderator.

Table 1. Individual assessment information

Assessment
Contributing Positions Number of proposals from a participant in relation with the total

number of proposals.
Contributing Arguments Percentage of arguments from the participant in relation with the total

number of registered arguments.
Punctuality Average of time to complete the task, as a percentage of time

assigned to the task.
Relevance of Arguments Number of arguments from a participant that contributed to the final

score in relation with the total number of arguments.
Flexibility to converge Number of score changes to converge with the majority, in relation

with the total number of score changes to converge with the majority.

4.2. FTR implementation

Any FTR requires several pre-arrangements from the moderator. The
FTR Tool supports some of these activities. It allows importing the review
documents into the system. It also allows presenting the reviewers’ initial
proposals and comments, and selecting for discussion (with control by the
moderator) the artifacts that seem more conflicting.

Another important supported function is allowing the moderator to
check for duplicates and equivocal statements. Using the FTR Tool, the
moderator may turn doubts, problems, comments, alternatives, and
solution into validated proposals for assessment by the reviewers in the
next phase. We note however that this preliminary phase is not the main
focus of our research. We actually concentrated our research on the
support to the second phase: the collaboration-conflict process.

The second phase starts when the moderator sends the first validated
proposals to the reviewers. New proposals may be delivered during the
review if necessary. To ensure confidentiality, the proposals are
dissociated from the original authors.

During the second phase, the reviewers register their scores. Each
reviewer may associate a score to a proposal, reflecting his/her judgment
about the proposal (0 - not an error/accept; 1 - light error/ accept with
restrictions; 2 - serious error/reject). In case the chosen score is 1 or 2, the
reviewer is requested to complement the score with arguments, consisting
of small text sentences. All arguments should be linked to a Functional
Specification Document. Examples include: “the item cannot be related

12 Linhares, Borges, Antunes

with the Functional Specification and should be removed”; “the item does
not comply with the specification of function X”; or “the item fails to
implement requirement Y”.

The positions in favor and against each proposal are automatically
calculated. The divergences are shown to the reviewers without exposing
the identities of the opponents. After evaluating the arguments associated
with one proposal, a reviewer may change his/her own position or add
additional arguments. The changes in positions update the associated
arguments. This procedure may be repeated until closing a proposal with
the final score. Updates to positions and arguments are visible to all
reviewers.

When there are no positions against a proposal, it is immediately
“closed” and the final score is known. In order to cover all proposals
assigned to a FTR session, a “closed” proposal cannot be reopened in the
same session. Also for efficiency reasons, the proposals are controlled by
a timeout mechanism. The moderator is responsible for setting the time
limits and closing the proposals when the time limits are reached. The
reviewers are notified before the proposal time is out. After all proposals
are closed the process advances to the decision phase.

The decision phase will determine the output of the FTR. As previously
mentioned, a consensual score may not be achieved for every proposal. In
order to close the review, the moderator may adopt three different
strategies: majority voting, deciding another negotiation round, and
assigning his/her decision. The moderator selects one of these rules before
starting the session to guarantee the transparency principle.

4.3. Additional implementation details
The FTR tool was built using the Microsoft .Net framework and C#
language. Being a Web application, it can be used at any time and place.
The adopted database manager was SQL Server. To illustrate the
prototype, we present some screen dumps.

Figure 2 shows the beginning of the FTR session. The proposals
selected by the moderator are displayed at the left. The participants enter
their positions on the right.

Collaboration and Conflict in Software Review Meetings 13

Fig 2. Registering the participants’ positions.

Fig 3. Argumentation of divergent positions.

Figure 3 illustrates some possible outcomes of the collaboration-
conflict process. A proposal should be negotiated when it receives
different scores. The arguments associated with each position provide
rational elements for the change of positions. Notice that in the illustrated
example there are no arguments associated with proposal 2 (row 2)
because the scores were consensual.

Figure 4 shows how arguments are inserted. For each proposal, the
system shows its positions. When a position is added, the system opens a
text box for writing an argument.

1

1

0

1

1

1

2

0

1

0

1

1
Argument 1

...

Proposal 1

Argument 2

Argument 3

Proposal 2

Proposal 3

Proposal 4

The proposals
under
consideration

Position:
• Not an error
• Serious error
• Light error

 Reviewer 1 Reviewer 2 Reviewer N

14 Linhares, Borges, Antunes

Fig. 4. Adding an argument to a divergent position.

When the session is completed, a summary is generated. This is shown
in Figure 5. When assessing the results, the moderator is able to decide on
the next steps. One alternative is giving the participants more time to
analyze documents and code, and then scheduling another session.
Another possibility is making a decision on the proposals that have not
reached consensus.

Fig 5. Summary of the FTR session.

5. An Evaluation of the FTR Tool
An evaluation of the FTR tool was carried out and its results were
compared with those obtained with a standard FTR. The evaluation was

In favor
Against The text of the

argument

The proposal under
consideration

Level of consensus:
• High
• Medium
• Low

The proposals
assessed in the
session

Summary of
positions

Status of proposal:
• Closed
• Under negotiation

Collaboration and Conflict in Software Review Meetings 15

conducted in a telecommunications company operating in Brazil. We use
the fictitious name BTC to preserve the anonymity of both the company
and the participants. The main purpose of the evaluation was to obtain
qualitative insights about the collaboration-conflict model, the process and
the FTR tool.

5.1. Experimental setting
BTC subcontracts several software companies to develop software
artifacts. The subcontracted companies may be located in Brazil or abroad.
Before formally concluding these contracts, all artifacts delivered by the
subcontractors must be submitted to a quality assurance process that
evaluates them against the specifications described in the contracts.
Depending on the task complexity, quality assurance may demand
considerable time and effort from both parties. The standard FTR has been
used for a few years and all members of the quality assurance team
considered that changes could be done to improve it without reducing
quality, especially because the FTR were done face-to-face and often
involved foreign subcontractors.

The standard FTR engages from five to eight people: up to four
authors, three reviewers and a leader. For the evaluation sessions we
planned a similar team. However, we had to define how to compare the
standard FTR against our approach. In theory we had two alternatives:

1) Select an artifact, perform the standard and new FTR using two different teams,
and then compare the results;

2) Assign the same team to two different but equivalent artifacts; and have the
team successively apply the standard and the new FTR approaches.

Both alternatives had some constraints. We could not count on real
subcontractors to play the authors’ role due to the costs involved. We also
did not have formal authorization from BTC to apply the new FTR
approach in real reviews. But we still wanted to use real data in our
evaluation. We thus adopted a variation of alternative 1: Select two recent
artifacts and recover their FTR records, which were already concluded
through the standard process. This corresponded to a post-hoc analysis of
the FTR process.

After that, we rerun the FTR with the same two artifacts but using a
different review team. From an experimental point of view, this
corresponds to repeating samples with different subjects and experimental
conditions (traditional FTR and our approach, using the FTR tool).

16 Linhares, Borges, Antunes

We then compared the results of both samples. We are aware of the
limitations of this schema, but we preferred that to using, for example, a
totally artificial setting, such as having students playing the FTR.

For the comparison we used three criteria: (1) number of proposals; (2)
number of arguments; and (3) number of changed positions toward
consensus. The comparison was directed by the assumption that higher
these indicators were, higher was the quality of the reviewing process. The
number of changed positions toward consensus was an indicator that
deserved some further analysis, as discussed later.

5.2. Evaluation results
In the following description of the evaluation results we will refer to the
artifacts as FE29520 and FE22520. First, it should be noted that the
reviewers rejected them both. When comparing the results, we observed
that the new FTR method resulted in increased numbers of arguments and
changed positions towards consensus. This may be a sign that the FTR
tool promotes higher levels of argumentation than traditional FTR.

A summary of the obtained quantitative results is reproduced in Tables
2 and 3. The standard FTR of FE29520 resulted in 4 proposals, 6
arguments and 2 changed positions. The new FTR (using the FTR Tool)
resulted in 31 proposals. The first session resulted in 15 arguments and 3
changed positions, and the second session an additional 62 arguments and
1 changed position. Regarding the standard FTR of FE22520, we had 9
proposals, no arguments and no changed positions. The new process (FTR
Tool), on the other hand, resulted in 23 proposals, 1 argument and also no
changed positions. The results from FE22520 show that the participants
(and in particular the leader) took the immediate decision to reject the
functional specifications, which explains the absence of arguments.

Table 2. Indicators of FE29520 review

Indicators Standard FTR FTR Tool
Elapsed Time 3 8
Number of proposals raised 4 31
Number of sessions 3 2
Number of arguments placed by reviewers
and authors 6 15 and 62

*
Number of changed positions towards
consensus 2 3 and 1*

* First and second sessions, respectively

Collaboration and Conflict in Software Review Meetings 17

Table 3. Indicators of FE22520 review

Indicators Standard FTR FTR Tool
Elapsed Time 7 5
Number of proposals raised 9 23
Number of sessions 1 1
Number of arguments placed by reviewers
and authors 0 1

Number of changed positions towards
consensus 0 0

Apparently, the simplicity of the FTR Tool and the short training

applied before the sessions were sufficient to accomplish the reviews
without relevant problems. We noticed however, that the arguments were
not always used as such. For instance, several comments were inserted as
if they were arguments. Comments such as “I agree with the item above”
are not real arguments but appeared as such. This may impact the above
comparisons. Only about 40% of the arguments written by the team
members were actually identified as real arguments. These difficulties are
in line with those reported by Borges et al44 on the use of a structured
argumentation model.

5.3. Questionnaires
The participants in the evaluation (those that used the FTR Tool) were
requested to complete an open questionnaire about the tool. The answers
to the questionnaire seem to indicate, in a general way, that the tool
supports the dynamics of the collaboration-conflict model and promotes
collaboration in FTR. A summary of advantages and disadvantages
pointed by the participants is presented in Tables 4 and 5. Table 4 refers to
the standard FTR while Table 5 refers to the FTR Tool usage.

Table 4. Advantages and disadvantages of standard FTR

Positive Aspects Negative Aspects
Often a face-to-face meeting is more
productive because people have
difficulties in expressing themselves in
writing - verbally is easier and faster -
especially when it comes to a discussion
where reasoning through arguments is
necessary.

Meetings are not always possible because
of the geographical distribution and the
time involved. Also, difficulties
documenting the meeting: what has been
discussed and what has been resolved.
Negotiation is difficult because there is no
consolidation of ideas in written format.
Poor use of time in meetings where one

18 Linhares, Borges, Antunes

loses focus easily.
Items considered irrelevant are not
captured, but they contribute to a more
clean and clear documentation.

The possibility of using drawings to
explain an idea, facilitating the
understanding and optimizing time
usage.

There is no reliable history of assessments
made by each participant.
When it is necessary to return to a previous
validation, there is no history of meetings
and positions from each participant.
Sometimes an item under discussion is
forgotten. The questions raised during the
review end up lost after several versions.

The participants pointed out the following main advantages: (1) the tool

was easy to learn; (2) had clear rules; (3) managed knowledge evenly; and
(4) preserved the argumentation history. Also, the support to asynchronous
and geographically distributed meetings was identified as an advantage,
though the face-to-face meetings ease understanding and offers more
expressiveness.

Table 5. Advantages and disadvantages of using the FTR tool

Positive Aspects Negative Aspects
Outcomes in one place, where all
participants have access.

Not enough space to type an
idea.

Participants may interact at the
meetings at different times and
without the need of being in the same
place. It is a solution to the problem
of dispersed teams.

The tool was unavailable during
certain periods.

Negotiation was much faster because
there was a consolidation of the
points raised.

As each person works on her/his
own schedule, sometimes the
question you insert stays
without any response for some
time.

Less likely to shift the meeting focus.
Uptake of irrelevant items that may
contribute to a more clean and clear
documentation that facilitates the
next steps.

May hinder understanding, if
the written communication is
not clear.

The validations records of each
participant are stored and this avoids

Collaboration and Conflict in Software Review Meetings 19

bad communication.
You can return to the validation
process at any time.

Does not maintain version
control. An issue may not be
answered in the first round and
may reappear later. But there is
no explicit information that this
issue has been treated earlier.

Contributes to equalize knowledge of
everyone involved in the project.

The formalization of the problems /
issues / positions / arguments /
results are recorded in a structured
way, and it keeps meeting history.

There should be links between
positions, arguments and
evaluations from a single user,
i.e., a user can assess all the
involvement her/he had with an
issue. This would make the tool
more flexible and optimize the
time to understand the issues.

It is important to emphasize that the participants, in general, valued the

capability to register all arguments in an organized way. This seems to
ease changing positions towards consensus and enriches the FTR as a
whole.

One of the main problems identified in the standard FTR is that the
review repeats itself several times without necessity, only because the
reviewers’ recommendations seem to be unnoticed by the authors. The
FTR Tool was seen by the participants as a mechanism to overcome this
problem.

Overall, the comments produced by the participants indicate that the
desired objectives for the FTR are coherent with the collaboration-conflict
model: supporting a continuum of collaboration and negotiation. The
participants in the experiment indeed recommended the adoption of the
FTR Tool in their organization.

6. Discussion
In Table 6 we summarize the various concepts involved in the
collaboration-conflict model. The major distinctions concern the
behavioral context, expected attitudes, computational support, incentives,
contextual factors, quality criteria, and data elements. As the paper shows,
the integration of such disparate concepts requires bridging information
sharing with negotiation and argumentation. This was implemented in the
FTR Tool through one common data element: argument. Arguments

20 Linhares, Borges, Antunes

contribute at the same time to build a common understanding of the
problem and to bring forward different views and conflicting positions.

Looking at this focal point, it was striking to find out that in the
evaluation the FTR Tool generated more arguments than the standard
FTR. The responses to the questionnaires also emphasize that the
participants considered arguments as important meeting elements,
allowing them to reason and consolidate the discussion while avoiding bad
communication.

Table 6. The collaboration-conflict model.

 Collaboration Conflict
Behavioral context Single-party, collaborating Differentiated, homogeneous
Expected attitudes Collaborative Conflictive
Computational support Information sharing Negotiation, argumentation
Incentives Awareness, visualization, knowledge

exchange, contribution, consensus
Conflict detection, preferences,
settlement spaces, detection of
malicious acts

Contextual factors Expertise, involvement Level of conflict, status differences
Quality criteria Efficiency, contribution Efficiency, flexibility
Data elements
implemented by the FTR
tool

Proposals, arguments, decision, final
scores

Positions, arguments, scores
Automated positions

Although these results are promising, we are aware that we need more

experiments to claim that computer support may increase argumentation,
and also that argumentation may increase the quality of review meetings.
The qualitative insights obtained with the experiments show that such
causal relationships should be further investigated, and also indicate that
the increased number of arguments might be related to the increased
number of proposals. One possible interpretation is that the collaboration-
conflict model might promote constructive conflict, since conflicting
positions may be accompanied with alternative proposals. This
interpretation is inline with the observations from D’Astous et al,1
although in that case no technology support was used.

We also observe that the validation in a real-world setting provided
some insights not possible when using students or artificial settings, but on
the other hand limited the number of samples and the level of control over
the evaluation setting. In any case we are aware that we need more
sessions with more variety of artifacts and participants to consolidate our
conclusions.

We finally note that of the three quality criteria considered by our study
- efficiency, flexibility and contribution - only contribution seems to have
been affected by the FTR Tool. Future experiments may be set up to

Collaboration and Conflict in Software Review Meetings 21

evaluate the impact of technological incentives specifically focused on
improving efficiency and flexibility.

7. Conclusions

We developed a collaboration-conflict model for software review
meetings and a tool to support it. The collaboration-conflict model brings
together very distinct behavioral contexts, expected attitudes,
computational support, incentives and quality criteria. The research
allowed us to understand how to bring together these elements. The
developed collaboration-conflict process integrates information sharing
with negotiation and argumentation, linking various data elements such as
decisions, proposals, positions, arguments and scores.

Two evaluation sessions were carried out in a telecommunications
company that adopts a global software development strategy. We
compared the results of four review meetings, two using the standard
review process and two using the tool described in this paper. The
quantitative and qualitative results provide some insights about the
reviewers’ behavior facing the somewhat contradictory process of
collaboration-conflict.

First, the evaluation data indicates that the developed tool is capable to
support software reviews with some advantages over the standard process.
Second, the evaluation shows that the pivot data element in the
collaboration-conflict model is the argument, as it integrates the
collaborative and the negotiated aspects of the tool functionality.

And third, the evaluation also allowed us to identify some points that
may constitute subject for future research. An important challenge is to
evaluate the causal relationships between technology use, increased
argumentation and improved decision quality. Another challenge is
validating the positive relationships between proposals and arguments,
delineating what may be designated as “constructive conflict”. And
finally, this research also gives some positive indications towards
extending the collaboration-conflict model to other collaborative tools and
applications.

The research described in this paper contributes to information systems
development in two main ways. One is raising attention, articulating the
problems and describing a technical solution for integrating collaborative
and conflicting behaviors in computational support. The other one is
contributing to the development of technology-designed incentive
mechanisms, which influence human behavior and process quality through

22 Linhares, Borges, Antunes

information structures that promote positive and discourage negative
values.

Acknowledgments

This work was partially supported by grants No. 479374/2007-4 and
567220/2008-7 from CNPq (Brazil), and grant PTDC/EIA/102875/2008
from FCT (Portugal).

References
1. P. D’Astousa, F. Détienne, W. Visser and P. Robillard, Changing Our View on Design

Evaluation Meetings Methodology: A Study of Software Technical Review Meetings, Design
Studies, 25(6) (2004) 625-655.

2. P. Antunes, J. Ramires and A. Respício, Addressing the Conflicting Dimension of Groupware:
A Case Study in Software Requirements Validation, Computing and Informatics, 25 (2006)
523-546.

3. A. Hevner, S. March, J. Park and S. Ram, Design Science in Information Systems Research,
Management Information Systems Quarterly, 28(1) (2004) 75-105.

4. T. Dyba and T. Dingsøyr, Empirical Studies of Agile Software Development: A Systematic
Review, Information and Software Technology, 50 (2008) 833-859.

5. A. Mockus, R. Fielding and J. Herbsleb, Two Case Studies of Open Source Software
Development: Apache and Mozilla, ACM Transactions on Software Engineering and
Methodology, 11(3) (2002) 309-346.

6. E. Veenendaal, Standard Glossary of Terms Used in Software Testing (International Software
Testing Qualifications Board, 2007).

7. M. Fagan, Design and Code Inspections to Reduce Errors in Program Development, IBM
Systems Journal, 15 (1976) 182-211.

8. P. Johnson, Reegineering Inspection, Communications of ACM, 41(2) (1998) 49-52.
9. J. Esser, Alive and Well after 25 Years: A Review of Groupthink Research, Organizational

Behavior and Human Decision Processes, 73(2-3) (1998) 116-141.
10. R. Baron, So Right It’s Wrong: Groupthink and the Ubiquitous Nature of Polarized Group

Decision-Making, Advances in Experimental Social Psychology, 37 (2005) 219-253.
11. C. Schwenk and J. Valacich, Effects of Devil's Advocacy and Dialectical Inquiry on

Individuals Versus Groups, Organizational Behavior and Human Decision Processes, 59
(1994) 210-222.

12. S. Fricker and P. Grünbacher, Negotiation Constellations – Method Selection Framework for
Requirements Negotiation, Requirements Engineering: Foundations for Software Quality
(Springer, 2008), pp. 37-51.

13. J. Holt and C. DeVore, Culture, Gender, Organizational Role, and Styles of Conflict
Resolution: A Meta-Analysis, International Journal of Intercultural Relations, 29(2) (2005)
165-196.

14. K. Thomas, Conflict and Conflict Management: Reflections and Update, Journal of
Organizational Behavior, 13 (1992) 265-274.

15. R. Vetschera, Preference Structures of Negotiators and Negotiation Outcomes, Group
Decision and Negotiation, 15(2) (2006) 111-125.

Collaboration and Conflict in Software Review Meetings 23

16. M. Poblet, P. Casanovas, J. López-Cobo and N. Casellas, Odr, Ontologies, and Web 2.0,

Journal of Universal Computer Science, 17(4) (2011) 618-634.
17. A. Lodder and J. Zeleznikow, Developing an Online Dispute Resolution Environment:

Dialogue Tools and Negotiation Support Systems in a Three-Step Model, Harvard
Negotiation Law Review, 10(1) (2005) 287-336.

18. R. Briggs and P. Gruenbacher, Easywinwin: Managing Complexity in Requirements
Negotiation with Gss, Proceedings of the 35th Hawaii International Conference on System
Sciences, Hawaii, 2002.

19. P. Antunes and T. Ho, The Design of a Gdss Meeting Preparation Tool, Group Decision and
Negotiation, 10(1) (2001) 5-25.

20. D. Damian, A. Eberlein, M. Shaw and B. Gaines, An Exploratory Study of Facilitation in
Distributed Requirements Engineering, Requirements Engineering, 8 (2003) 23-41.

21. P. Tedesco, Marco: Building an Artificial Conflict Mediator to Support Group Planning
Interactions, International Journal of Artificial Intelligence in Education, 13 (2003) 117-155.

22. M. Halling, S. Biffl and P. Grunbacher, An Economic Approach for Improving Requirements
Negotiation Models with Inspection, Requirements Engineering, 8 (2003) 236-247.

23. S. Alshattnawi, G. Canals and P. Molli, Concurrency Awareness in a P2p Wiki System, The
2008 International Symposium on Collaborative Technologies and Systems, California, USA,
2008.

24. F. He and S. Han, A Method and Tool for Human–Human Interaction and Instant
Collaboration in CSCW-Based Cad, Computers in Industry, 57 (2006) 740-751.

25. N. Shi, W. Tang, T. He and Y. Ye, Real-Time Conflict Detection Using Prior Knowledge and
Context in CSCW Plant Design System, Proceedings of the 2007 11th International
Conference on Computer Supported Cooperative Work in Design, Melbourne, Australia, 2007.

26. H. In, D. Olson and T. Rodgers, Multi-Criteria Preference Analysis for Systematic
Requirements Negotiation, Proceedings of the 26th Annual International Computer Software
and Applications Conference, Oxford, England, 2002, pp. 887-892.

27. M. Jarke, T. Jelassi and M. Shakun, Mediator: Toward a Negotiation Support System,
European Journal of Operational Research, 31(3) (1987) 314-334.

28. L. Yesilbas and M. Lombard, Towards a Knowledge Repository for Collaborative Design
Process: Focus on Conflict Management, Computers in Industry, 55(3) (2004).

29. N. Karacapilidis and D. Papadias, Computer Supported Argumentation and Collaboration
Decision Making: The Hermes System, Information Systems, 26(4) (2001) 259-277.

30. J. Ramires, P. Antunes and A. Respício, Software Requirements Negotiation Using the
Software Quality Function Deployment, Groupware: Design, Implementation, and Use. 11th
International Workshop, Criwg 2005, Porto De Galinhas, Brasil, September 2005
(Heidelberg, Springer-Verlag, 2005), pp. 308-324.

31. T. Rodgers, D. Dean and J. Nunamaker, Increasing Inspection Efficiency through Group
Support Systems, Proceedings of the 37th Hawaii International Conference on System
Sciences, Hawaii, 2004.

32. P. Ipeirotis, F. Provost and J. Wang, Quality Management on Amazon Mechanical Turk,
Proceedings of the ACM SIGKDD Workshop on Human Computation, New York, USA, 2010.

33. A. Kittur and R. Kraut, Beyond Wikipedia: Coordination and Conflict in Online Production
Groups, Proceedings of the 2010 ACM conference on Computer supported cooperative work,
Savannah, Georgia, USA, 2010.

24 Linhares, Borges, Antunes

34. C. Jensen and W. Scacchi, Collaboration, Leadership, Control and Conflict Negotiation

Processes in the Netbeans.Org Open Source Software Development Community, Proceedings
of the Proceedings of the 38th Annual Hawaii International Conference on System Sciences,
Hawaii, USA, 2005.

35. W. Kunz and H. Rittel, Issues as Elements of Information Systems, Institute of Urban and
Regional Development, University of California at Berkeley (1970).

36. J. Conklin and M. Begeman, Gibis: A Hypertext Tool for Exploratory Policy Discussion,
ACM Transactions on Office Information Systems, 6(3) (1988) 303-331.

37. M. Lubars, Representing Design Dependencies in an Issue-Based Style, IEEE Software, 8(4)
(1991) 81-89.

38. M. Koegel, H. Naughton, J. Helming and M. Herrmannsdoerfer, Collaborative Model
Merging, Proceedings of the ACM international conference companion on Object oriented
programming systems languages and applications companion, Reno, Nevada, USA, 2010, pp.
27-34.

39. V. Dubrovsky, S. Kiesler and B. Sethna, The Equalization Phenomenon: Status Effects in
Computer-Mediated and Face-to-Face Decision-Making Groups, Human-Computer
Interaction, 6(2) (1991) 119-146.

40. H. Raiffa, J. Richardson and D. Metcalfe, Negotiation Analysis. The Science and Art of
Collaborative Decision Making (Cambridge, Harvard Business Press, 2002).

41. L. Weingart, R. Bennett and J. Brett, The Impact of Consideration of Issues and Motivational
Orientation on Group Negotiation Process and Outcome, Journal of Applied Psychology,
78(3) (1993) 504-517.

42. J. Fjermestad and S. Hiltz, An Assessment of Group Support Systems Experimental Research:
Methodology and Results, Journal of Management Information Systems, 15(3) (1999) 7-149.

43. J. Herbsleb, Global Software Engineering: The Future of Socio-Technical Coordination,
International Conference on Software Engineering: Future of Software Engineering,
Minneapolis, 2007, pp. 188-198.

44. M. Borges, J. Pino, D. Fuller and A. Salgado, Key Issues in the Design of an Asynchronous
System to Support Meeting Preparation, Decision Support Systems, 27(3) (1999) 271-289.

