

1

Abstract—This paper analyzes exception handling in business

process management with a major focus on resilience, i.e. the
capability to maintain operations under a wide spectrum of
potential breakdowns. The research highlights the need to
support various types of exceptions, including expected, planned,
unexpected and true exceptions. The developed integrated
support contemplates the vital human involvement in exception
handling. We propose a specialized component supporting
exception diagnosis, escalation to several operators and groups,
collaboration support, recovery actions and monitoring the
system evolution. The fundamental contribution of this research
is the extension of BPM exception handling capabilities to true
exceptions.

Index Terms—Business Process Management, Organizational
Resilience, True exceptions, Ad-Hoc Interventions.

I. INTRODUCTION
ARIOUS organizations in multiple fields adopted process
orientation with the purpose to optimize their businesses

and leverage their investments in technology. Business
Process Management (BPM) integrates a collection of
technologies capable to translate business processes, rules and
practices into computer-supported activities, relinquishing
routine coordination tasks from humans and empowering
complex operations with timely strategic and tactic
information. Two other goals often associated with BPM
include increasing the level of automation and easing
structural changes in organizations through better isolation of
functions such as coordination, data and resource
management, messaging and service decomposition.

The process-oriented view has however one fundamental
drawback. BPM assumes a rationalistic approach where
organizations formalize work down to the task-level details
required by the underlying technology. Unfortunately, this
rationalistic approach is often infeasible or detrimental to
organizational behavior. Firstly, we should consider there is a
trade-off between responsiveness and formalization. High
formalization takes a significant amount of time and effort
from business analysts and system designers, turning
organizations less responsive to turbulent environments. Less
formalization avoids these problems, but challenges the
capacity of BPM technology to effectively manage business

 P. Antunes is Associate Professor (with Habilitation) at the Department of

Informatics of the Faculty of Sciences of the University of Lisbon, Portugal
(e-mail: paa@di.fc.ul.pt).

activities.
Secondly, we should also consider there is a trade-off

between detail and ambiguity. Most service-oriented
organizations deal with great levels of informality and
ambiguity when performing their daily operations. Therefore
many process definitions must be kept at very generic levels
of detail. On the contrary, BPM requires very detailed
specifications about what, how, when, who and where tasks
should be executed. So support to the one will negatively
impact the other and vice versa.

Furthermore, it has been shown by various ethnographic
studies done in organizations that humans do not always act as
prescribed [1]. Humans also tend to lose vigilance of routine
operations. In many cases the main role of process definitions
is helping the operators make their own decisions in sync with
the peculiarities of the real-world context.

We thus find two potentially conflicting process-oriented
views. One, which is often designated machine-oriented,
assumes that technology will take control over the business
activities. The other one, referred as human-oriented, assumes
that control depends on human discretion. Many BPM
solutions have been developed with a strong focus on the
machine-oriented view, thus leading to a difficult acceptance
by their hosting organizations [2-4]. We expect the integration
between these two views may increase acceptance.

But the consequences of the human/machine conflict extend
beyond organizational acceptance. Nowadays one of the main
challenges faced by organizations concerns resilience [5]: the
capacity to resist major business disruptions due to
unforeseeable, unexpected or catastrophic events, leading the
organizational systems beyond the planned service limits
without serious losses. Many highly reliable organizations in
several key sectors, e.g. nuclear power, chemical production,
aviation, utilities, banking, etc., already adopted principles,
methodologies and mechanisms to preserve themselves when
facing major business disruptions. They usually adopt the
following behavior [5]: (1) flexibility understanding and
acting upon the evolving situation context; (2) deference to
knowledge and reliance on the experience of most
knowledgeable people; and (3) capability to make decisions
lacking full insights about the situation.

The recent studies on organizational resilience clearly
emphasize the human-oriented perspective over business
processes, since human discretion is considered fundamental
to make decisions under unpredictable or uncertain contexts.
However, from our point of view, one major challenge
associated with organizational resilience concerns exactly the

BPM and Exception Handling: Focus on
Organizational Resilience

Pedro Antunes

V

Pedro Antunes
Antunes, P. (2011). BPM and Exception Handling: Focus on Organizational Resilience. IEEE Transactions on System, Man, and Cybernetics Part C: Applications and Reviews, 41(3), 383-392. doi:10.1109/TSMCC.2010.2062504
�

2

integration between the human/machine views:
• Supporting dynamically evolving business processes

under emergent situations;
• Whenever necessary, relinquishing control from the

technology to support unplanned tasks, deferring control
to the most adequate persons;

• Providing process guidance even in contexts where the
available process definitions do not comply with the
current context;

• Supporting human response to novel, innovative and
challenging situations;

• Facilitating the transition from emergent to normal
operations.

This paper analyzes in detail the human/machine conflict
and the approaches developed to overcome its consequences.
We also identify the major BPM constraints associated with
this conflict. Then, we propose an approach aiming to increase
organizational resilience. Our approach extends traditional
BPM with the capability to relinquish control from the
technology to humans when facing unforeseeable, unexpected
or catastrophic situations, and regain technology control when
the operations come back to routine.

The paper is organized as follows. In section II we elaborate
the conceptual foundations of the human/machine conflict.
Section III discusses the current state of the art in BPM.
Section IV presents and discusses the developed approach.
Section V is focused on implementation details. Section VI
presents a case walkthrough. Section VII provides a
preliminary report from the field. Finally, Section VIII
discusses the implications and draws some concluding
remarks.

II. THE HUMAN/MACHINE CONFLICT
Sheth et al [6] define business process as a collection of

activities tied together by a set of precedence relations and
pursuing a common organizational goal; and workflow
management as the automated coordination of activities
between workers and computers to carry out a business
process. According to the Workflow Management Coalition
(WfMC) [7], the infrastructure necessary to manage business
processes includes at least: an enactment service responsible
for managing processes; a modeling component responsible
for defining business processes and injecting them into the
enactment service; and a client component responsible for
carrying out the activities by controlling the interaction with
the workers and other services. This infrastructure is
compliant with service oriented architectures and various
types of enterprise architectures [8, 9].

We note the WfMC infrastructure is fundamentally
machine-oriented: it assumes the enactment service controls
business processes based on the normative engagement of
process definitions [10]. Suchman [11] studied business
processes from a sociological standpoint, analyzing the
variability of human activities in organizations and the
inference, interpretation and contextualization often necessary
to carry out the intended goals under variable conditions.

According to this human-oriented perspective, process
definitions guide actors in a space of available actions,
providing situation awareness and orientation, although not
assuming a normative engagement. In this scenario humans
apply their cognitive capabilities to carry out activities
informed by business process definitions. The control is thus
in the hands of the workers and not the computers.

These distinctions and their implications have fuelled the
debate between researchers working in the two sides of the
fence, especially after the Suchman’s paper “Do Categories
have Politics?” [12] criticized the BPM approach proposed by
Winograd and Flores [13]. The aftermath of what has been
called “the Suchman-Winograd dispute” demonstrates there is
not exactly a fence, since both views bring important
contributions to systems thinking [14, 15]. Actually, the
dispute raised multiple opportunities to research the
integration of human/machine views [16-18].

In this paper we address this integration from a systems’
design point of view. Perhaps the first theorist to address the
issue from this point of view was Simon [19]. Simon
characterized design as a process aiming to develop artificial
artifacts. Such artifacts must not ignore or violate natural law
and should also embody human goals. Thus there is a clear
distinction between the inner structure of the artifact and the
outer environment where it operates, but also the need to adapt
both to avoid failing the design goals. The inner depends on
the outer, but the outer is also influenced by the inner.

Vicente [20] enriched Simon’s framework by distinguishing
different layers of complexity, comprising the technical/
engineering system, workers, organizational/management
infrastructure and environmental context. Design might then
be regarded as the adaptation of these different layers.
Certainly the human layer is one of the most complex to
design.

Rasmussen [21] developed a framework considering three
levels of human performance: role-based, rule-based and
knowledge-based. The first one addresses mechanistic tasks
accomplished by humans when facing routine work. We find
rule-based performance in situations where work activities
have been planned and prescribed, although giving workers
some decision latitude. And knowledge-based performance is
found whenever workers face novel situations and their
decision-making abilities must be fully exercised.

Reason [22] used this framework to differentiate human
performance in administrative control: from prescriptive,
based on procedures and rules, to discretionary, based on
training and experience. In between we find mixed control
situations relying on training and procedures. This perspective
clearly integrates the human/machine orientations into a
prescriptive-discretionary continuum of design possibilities.

Perrow [23] established the link between organizational
strategy and the prescriptive-discretionary continuum. The
Perrow’s framework is based on the notion of exception. An
exception occurs whenever the organization fails to
accomplish the intended business goals, either because the
available procedures do not apply to the current context;
workers fail to understand, make decisions and act upon the

3

situation; or the technology creates barriers to the actions
necessary to overcome the exception. The study of exceptions
in organizations has demonstrated they occur quite frequently
[24].

Perrow defines two dimensions of exception: (1) task
variability refers to the number of exceptions encountered
while performing a task; and (2) task analyzability is the
degree to which search activity is needed to overcome the
exception. These dimensions highlight four exception-
handling strategies adopted by organizations:
• Routine (Low variability / High analyzability): Routine

working situations have few well-known exceptions that
are handled with established procedures.

• Crafted (Low variability / Low analyzability): Crafted
work has also few exceptions, but they require informal
interaction to find out what to do.

• Engineered (High variability / High analyzability): The
number of exceptions is high but well-known plans and
processes exist to handle them.

• Non-routine (High variability / Low analyzability): Non-
routine working situations require collaboration and
decision-making to find out creative responses.

This framework allows us to finally reach the core of the
human/machine conflict. The issue is that by focusing solely
on the routine/engineered strategies we are neglecting all the
situations requiring informality, collaboration and decision-
making; and focusing on the crafted/non-routine strategies we
are also neglecting all the situations demanding planning and
prescriptive actions.

Most highly reliable organizations are compelled to
coalesce the above strategies in order to swiftly respond to
exceptions, whatever they are. The absence of one single
strategy will necessarily be criticized for reducing resilience.
As a consequence, the design of organization’s artifacts should
take into consideration the functionality necessary to sustain
and develop the four strategies mentioned above.

III. BPM AND EXCEPTION HANDLING
In the previous section we discussed several exception-

handling strategies adopted by organizations to uphold
resilience. We will use the same categories to analyze how
BPM systems have been supporting exception handling.

A. Type I - Mechanistic
This category includes exceptions with low variability and

high analyzability. They may be classified in three classes
[25]: (1) basic failures, associated with failures in the
underlying technological infrastructure, such as networking,
database management and operating system; (2) application
failures like unexpected data inputs; and (3) expected
exceptions, events that were predicted during the process
definition phase but that do not correspond to the “normal”
process behavior.

Notice that failures result from system malfunctions while
expected exceptions come from semantic discrepancies
between the process definitions and the actual running

environment. These differences lead to distinctive handling
procedures. In the case of failures, the most common handling
procedure is to apply transactional mechanisms to return the
operations to a coherent state and proceed as planned [26].
Most of commercial BPM implementations are integrated with
database management and thus supply this exception handling
procedure. Another approach uses failure tolerance
techniques, e.g., replicating services [27].

Various solutions have been devised to handle expected
exceptions. Some rely on triggers to initiate predefined
exception handlers [25, 28-31]. Others adopt special modeling
constructs, triggered by conditions that identify the occurrence
of a certain exception [28, 29, 32-34]. In all cases the handling
procedures are planned during the design stage and applied in
an automated way.

It has been suggested that basic and application failures that
cannot be handled at the level where they occur should be
propagated as expected exceptions and handled as such by the
BPM system [29, 35]. This allows encapsulating failure
handling within the scope of expected exception handling, the
reason why we will not consider further the impact of failures
on BPM.

B. Type II - Planned
This category includes exceptions with high variability and

high analyzability. They require human involvement to
analyze the organizational performance and delineate new
working methods. These exceptions typically emerge from
incomplete designs, design errors and structural changes in the
business environment [36, 37].

The commonly adopted exception handling procedure is to
dynamically redesign the affected business processes. This
approach requires the capability to adapt processes running in
the enactment service without any disruption in the operations
[38]. The major problem that has been addressed by the
research is to guarantee the system consistency and
correctness when migrating process instances [39-42]. Other
research lines explore change patterns [4, 43] and exception
mining [44, 45].

The dynamic changes must be executed under strict system
control, avoiding deadlocks, unreachable states and other
inconsistencies. The researchers have developed a set of
change rules enabling correctness checks before applying
dynamic changes [46, 47].

C. Type III - Informal
This category includes exceptions with low variability and

low analyzability. The major difference to the planned strategy
is that in this case there is no need, justification or enough
time to redesign the business processes.

The informal strategy responds to unexpected exceptions
[25]. These exceptions result from lack of knowledge about
the business process, its details and variations [36].

BPM technology may deal with unexpected exceptions in
two different ways: late binding and ad-hoc changes. Late
binding uses loosely specified processes that are only detailed
in runtime [45]. Ad-hoc changes are typically applied to a

4

small set of process instances and have a transient impact on
the system behavior [38, 48, 49]. This includes, for instance,
delaying an activity, designating another operator to
accomplish an activity, and inserting an activity not previously
defined by the normal process. In both cases a mixed control
policy is necessary, combining the momentary human control
crucial to understand the situation and make decisions with the
system control required to preserve consistency and
correctness.

D. Type IV - Non-routine
This category includes exceptions with high variability and

low analyzability. They have been designated true exceptions
[24]. True exceptions occur when the organization has no
previous plan, rules or knowledge about the exception. True
exceptions may be seen as dramatic events (in the case of
accidents and emergencies) or strategic opportunities for
changing the business. In both cases they demand human
judgment under incomplete information.

We should consider there might not be enough time to plan
dynamic changes when facing true exceptions. In these
situations ad-hoc changes to business processes are necessary,
but should not be constrained by the consistency and
correctness requirements [47]. If any system barriers are
imposed to the organization’s primary goal, then the
organization will find workarounds to the system [50].
Therefore, true exceptions set challenges different to the ones
discussed regarding the informal strategy.

Few approaches have been documented in the literature
addressing true exceptions in BPM. One of them integrates
BPM with external collaboration tools [51]. The purpose is to
normally maintain control in the enactment service but passing
it to collaboration tools when a true exception occurs.
However, no support was considered to continue with the
normal operations after resolving the exception. A mechanism
to determine the type of control more adequate to tackle
various types of exceptions, including true exceptions, has
also been researched [52]. This mechanism was conceived to
invoke decision-support tools when true exceptions occur.
However, it does not involve humans in the process of
determining the best strategy, neither considers changing the
strategy according to the evolution of the situation.

Other strategies aim to support decision-making and are
only indirectly linked to BPM. One case uses a knowledge
base to maintain information regarding past handling
procedures and to facilitate linking exceptions to handling
procedures [53]. Another case uses data mining to extract
relevant information about the exception and support
organizational decision making [44].

E. Summary
From the above overview we realize that automated

exception handling is crucial to increase the organization’s
capability to resist expected exceptions. However, when other
types of exceptions occur, human intervention is always
required and workers become a fundamental component
supporting organizational resilience.

Regarding this human role, the dynamic redesign increases
resilience by migrating business processes towards new
definitions, more capable to accomplish new organizational
goals. The late binding and constrained ad-hoc changes further
increase resilience by allowing more immediacy and less
planning. And finally, the unconstrained ad-hoc interventions
provide an increased level of resilience by giving wider
latitude of action and decision-making support.

Summarizing the whole scenario, we observe that
organizations must integrate various types of exception-
handling, covering the path from fully automated to fully
human discretionary actions. However, as we have seen
above, few approaches integrate fully human discretionary
actions in BPM.

Considering this scenario, our research goals are centered
on the integrated support to exception handling, covering in
particular constrained and unconstrained had-hoc interventions
in BPM. The next section details our approach.

IV. AN APPROACH TO SUPPORT AD-HOC INTERVENTIONS
We previously characterized the generic BPM infrastructure

with three main components: enactment service, modeling
component and client component. Let us now analyze their
capability to handle exceptions. The expected exceptions are
handled by the enactment service in conjunction with the
modeling component. The enactment service implements the
runtime mechanisms necessary to detect an exception and
invoke the corresponding handling procedure, while the
modeling component contributes with the language constructs
necessary to define the exception handling procedure.

Regarding planned exceptions, they may also be handled by
combining the modeling component and enactment service,
the former supporting process redesign and consistency
checks, and the later supporting dynamic changes to running
process instances.

Unexpected exceptions are more challenging. On the one
hand, the enactment service is capable to support and control
some changes to process instances, such as delaying or
repeating a task. But, on the other hand, the insertion of ad-
hoc tasks without a proper process definition and strict control
becomes problematic to manage. Often, there is no track
record of the tasks effectively accomplished, which may lead
the system to a completely ad-hoc venture. We thus need an
additional component managing ad-hoc interventions in the
enactment service.

True exceptions are beyond reach of most BPM
infrastructures. Besides difficulties managing unconstrained
ad-hoc interventions, we consider they lack support to
decision-making, collaboration and knowledge management.

Our approach extends the BPM infrastructure with a new
component designated control switch. The control switch is
responsible for moving control out of the enactment service
whenever some types of exceptions are detected. The control
switch supports ad-hoc interventions in the enactment service
and is responsible for orchestrating, monitoring and keeping
records of ad-hoc interventions.

5

In the following we will further detail the control switch.
We consider the proposed approach adopts this general
behavior:
1. Under normal conditions, we assume the organization

operates in a mechanistic way. This means the business
processes are managed under the strict control of the
enactment service;

2. The occurrence of an expected exception is handled by the
enactment service, invoking the corresponding handling
procedure. That procedure was predefined at design time
and is expected to bring the situation to a normal
condition;

3. However, sometimes these procedures are incapable to
resolve the situation and fail. Other times there is no
handling procedure associated with the occurring
exception. In both cases they require human intervention
and thus the control switch is invoked;

4. The control switch is invoked whenever three types of
exceptions occur: planned exceptions, unplanned
exceptions and true exceptions;

5. The control switch requests humans to diagnose the
exception. A diagnosis component (described later) will
support this functionality. Diagnosis is an ongoing
activity.

6. Having a diagnosis, the control switch may contemplate the
three possible routes described below;

7. If the organization is facing a planned exception, then there
is time to redesign business processes. The redesign will
involve the modeling component and enactment service,
and therefore the control switch will finish its own
service;

8. If the organization is facing an unexpected or true
exception, then the workers may have to apply recovery
actions in the enactment service. A recovery component
(described later) will support these actions. The
distinction between unexpected and true exceptions is
related with the level of control assumed by the control
switch. In the former case, the control switch restricts the
recovery actions to preserve the consistency and
correctness of the processes managed by the enactment
service, while in the second case no restrictions will be
considered.

9. The control switch will continue operating until the workers
are able to bring back the organization to a normal
condition and declare the exception is resolved.

We note this exception handling process may be modeled
and managed as a common work process. Indeed, we have
implemented it that way. More implementation details are
given later.

A. The control switch components
We will now discuss in more detail the components

necessary to implement the control switch. The first one to
consider is the detection component. It is responsible for
detecting exceptions and instantiating exception handling
processes. The workers, through a user-interface, or the
enactment service using a trigger, may raise exceptions.

TABLE 1

EXCEPTION ATTRIBUTES
Attribute Description A M
Type of detection Automatic or manual
Type of exception Planned, unexpected or true
Liable person Person in charge of the exception handling 1
Affected persons Persons involved in the process
Affected instances Process instances affected by the exception 2
Affected tasks Tasks affected by the exception 2
Affected processes Processes affected by the exception 2
Exception description Textual description of what may have occurred
Handling description Textual description of what should be done to

resolve the exception

A – Automatically specified; M – Manually specified.
1The liable person is automatically specified just after the exception is

raised: (1) if manually detected, whoever raised the exception; (2) if
automatically detected, the task/process owner.

2The affected processes, process instances and tasks are automatically
determined by the system just after the exception is raised, but may be
redefined afterwards by the liable person.

The diagnosis component serves to characterize the

exception using the attributes shown in Table 1 [54]. Some of
the attributes are automatically determined by querying the
enactment service, while humans must explicitly define the
other attributes. In any case, it should be emphasized that: (1)
the liable person may change the attribute values over time;
and (2) the liable person may also designate a new liable
person, delegating the capacity to reanalyze the situation and
change the exception attributes.

Thus two important functional capabilities associated with
the diagnosis component include associating the exception
attributes with a timeline and supporting a retrospective view
of the exception, from the initial detection to the current time,
showing what has changed and who was involved. The whole
dynamics of exception diagnosis will be described in more
detail in the case walkthrough.

The recovery component interfaces with the enactment
service to implement recovery actions. This includes a set of
quasi-atomic actions, such as cancel, jump forward and
backward, repeat and suspend [41].

As implied by the diagnosis, the control switch also needs
an escalation component. The escalation component is
necessary to bring more people to the exception handling
process. We consider four levels of escalating human
involvement: (1) the operator, when one individual is
responsible for the necessary recovery actions; (2) the peers,
when the recovery actions are still accomplished by one
individual but multiple co-workers may communicate to
analyze and discuss the problem; (3) the supervisor, when the
responsibility changes from the worker to the supervisor, but
the worker is yet able to contribute to analyze and discuss the
problem; and finally (4) the group, when a worker designates
a group of persons to get involved in the recovery actions.

The liable person is the only one that is able to escalate the
exception by designating another operator, peer, supervisor or
group. Just like diagnosis, escalation is an ongoing activity.
The responsibility may reside in one person and in a while
escalates to another person, peers, supervisor or group.

6

The collaboration component integrates the control switch
with any collaboration tools that may be available to support
communication, situation awareness and decision-making. It
does not implement collaboration, but instead interfaces with a
variety of external tools such as e-mail, messaging and
chatting. This approach also supports linking the control
switch with more complex group support and decision support
systems, or even specialized emergency management tools
[55, 56]. The collaboration component initiates collaboration
between the persons selected by the escalating component.

The monitoring component serves to instantiate ad-hoc
tasks dedicated to monitor the system evolution. The tasks
themselves are managed by the enactment service. The
monitoring component might be viewed as a kind of modeling
component specifically dedicated and constrained to collect
external data related with the exception handling process.

The final component considered by our approach is the
user-interface component. This component interfaces with the
persons involved in the exception handling, giving then access
to the services provided by the other components, with the
additional preoccupation to facilitate situation awareness,
decision-making and action. In Figure 1 we illustrate the
several components and relationships that assemble the control
switch.

V. IMPLEMENTATION DETAILS
The control switch was implemented in Java and integrated

in the OpenSymphony/OSWorkflow open source platform
[57-59]. This platform provides a basic enactment service for
BPM using XML descriptors for work process specification
and HTML for client integration with Web browsers.

In Figure 2 we illustrate the system behavior. The low-level
details on how exceptions are triggered in OpenSymphony
will not be discussed here. We just point out that after
detecting an exception the system requests the control switch
to initiate recovery. In the specific case shown in Figure 2 the
exception is a timeout of task T2 assigned to user U2.

Currently, only one process instance may be enacted for
each detected exception (we have not implemented nested

exceptions). OpenSymphony executes that process instance
exactly like any other process instances.

After the exception handling process starts, the initial
diagnosis information is set using the current details about the
exception. These details include: type of detected exception,
which is automatic in this case; liable person, who is U2, the
user responsible for T2, the current task when the exception
was raised; and affected processes and tasks, respectively P1
and T2. All this information is accessible by querying the
OSWorkflow object store.

Then the diagnosis component requests U2 to complete or
update the diagnosis. In the illustrated example U2 realizes
that U1, who is responsible for task T1, should assume the
exception handling. U2 designates U1 as the new liable
person. Consequently, the escalation component brings U1 to
the exception handling process. Note, for the sake of
completeness, that U2 could instead have designated U1 as a
peer, supervisor or group member, which would have involved
the collaboration component.

U1 is then requested by the diagnosis component to analyze
the exception and make any necessary changes to the
diagnosis. As mentioned before, the diagnosis component
allows overviewing the evolution of exception attributes. As
shown in Figure 2, U2 decides to affect task T1 to the
exception and then requests a recovery action: the process
should do a backward jump to task T1. This invokes the
corresponding action in the recovery component, which is a
low-level interface to the OSWorkflow object store that allows
changing the process state and next executable task to T1. The
exception handling process finishes with a request from U1.

Figure 2 does not illustrate the use of the collaboration
component, which is invoked when the liable person brings
other persons to exception handling. This component manages
the interaction between the liable person and the other users.
Three interaction modes are supported: (1) designating a peer,
with whom the liable person will be able to interact but that
will not be involved in the exception handling in any other
way; (2) moving up the liability to the supervisor, which is
similar to the case shown in Figure 2 but allows the supervisor
to interact with the subordinate; and (4) involving a group in

Fig. 1. Control switch components

Fig. 2. Implementation details

7

the exception handling.
When a group is involved, a parallel recovery task is

instantiated for each member, so they may concurrently
execute recovery actions. The possible side effects of
concurrent recovery actions are not considered in our
implementation. We note however such effects may be
mitigated through collaboration.

Currently, the collaboration component offers two
interaction mechanisms: e-mail and chat. This allows the
operators to adopt a synchronous or asynchronous
collaboration mode. Regarding the monitoring component, it
is capable to instantiate ad-hoc tasks that gather information
from an information source after a predefined timeout. The
implementation allows gathering information from a database,
using a SQL query, and from a URL.

And we finally mention the user-interface component (GUI
in Figure 2). OpenSymphony adopts HTML and Web
browsers to interface with the users. Therefore the user-
interface component consists of a collection of HTML pages
invoking functions supported by the control switch API. More
details may be found in [59].

VI. CASE WALKTHROUGH
In this section we walkthrough the exception handling

process from the organization’s point of view. The case
considers the delivery of goods in the automobile industry
from the north to the southeast of Europe; and the exceptional
event concerns a strike blocking road traffic in the middle of
Europe. The extension of the strike disallows adopting the
simple solution of choosing an alternative road. The usual
contractual terms in this industry impose financial penalties
when the goods are not delivered on time, which pushes the
producers to find a creative solution.

TABLE 2

EXCEPTION HANDLING EXAMPLE
Organizational behavior System use Comments
Goods packaged for
delivery

Goods packaged for
delivery

Truck arrives Truck arrives
Truck leaves with goods Truck leaves with

goods

Process evolves
according to the
specification; control
is in the enactment
service

Strike blocks truck
halfway to destination

Exception occurs;
process is suspended

Exception handling
process is instantiated;
control is passed to
the control switch

Driver realizes the
delivery will not be on
schedule

Driver diagnosis true
exception

Diagnosis component

Driver contacts
supervisor and asks what
to do

Driver brings
supervisor to
exception

Escalation component

Supervisor discusses with
other workers and realizes
no alternative road is
available

Supervisor brings
other workers to the
exception and uses
chat tool to discuss the
problem

Escalation and
collaboration
components

Supervisor realizes new
goods could be delivered
by air, but has no
authority to do it

Supervisor uses chat
tool to realize that
goods could be
delivered by air

Collaboration
component

The CEO is contacted for Supervisor brings Escalation and

approval CEO to the exception
and uses chat tool to
obtain approval

collaboration
components

CEO approves CEO uses chat tool to
approve

Collaboration
component

Worker is assigned by the
supervisor to proceed
with plane rental

Supervisor creates ad-
hoc task to deploy
solution; supervisor
also instantiates
monitoring task to
detect goods delivery

Recovery and
monitoring
components; the
worker is assigned to
the ad-hoc task

Find plane rental
company

Ad-hoc task

Rent plane Ad-hoc task
New goods packaged for
delivery

Ad-hoc task

Goods sent to airport Ad-hoc task
Plane leaves Ad-hoc task
Plane arrives to
destination

Ad-hoc task

Goods delivered Monitoring task
triggered

Process complete Supervisor executes
recovery task to finish
the process

Recovery component

Table 2 describes the case walkthrough. On the left we

show the typical response from the organization to the
exception. The case illustrates the integration between the
routine (e.g., the first 3 tasks), crafted (e.g., the driver
contacting the supervisor by phone) and non-routine strategies
(e.g., supervisor contacting CEO for support to the plane
rental solution).

The case also illustrates what in these circumstances would
happen to the enactment service in the absence of the control
switch. The most probable behavior would have the process
suspended after the “truck leaves with goods” task triggers a
timeout. This would require a maintenance operation in the
enactment service after the events to properly terminate the
process.

In the middle column we illustrate the system behavior
proposed in this paper. The case illustrates the extended
system support after the occurrence of the exception and
throughout the decision-making activities necessary to
overcome the exception. The system support comprehends not
only escalating the exception to the right people but also
supporting collaboration, monitoring exception handling and
recovering normal operations. Additionally, we observe the
proposed approach allows keeping records of the activities,
thus contributing to build organizational memory.

VII. REPORT FROM THE FIELD
In this section we report the field tests of our approach. The

main driver for these field tests was the deployment of a BPM
system for a Port Authority [58]. The control switch was an
add-on to the BPM system.

We defined two goals for the field tests: (1) to assess, in
real-world conditions, the viability of the control switch,
considering in particular its integration with BPM; and (2) to
obtain preliminary indications about the organization’s
behavior during exception handling. We start discussing the

8

first goal.
The Port Authority has a concession to manage the river

and shore activities within a coastal jurisdiction assigned by
the government. The Port Authority controls the river traffic
and cargo transfers to and from ships. A large number of
companies and individuals (e.g., fisherman) operate within the
port area. The Port Authority licenses designated spaces on the
shore for these activities, while the licensees assume
contractual obligations and pay fees. But managing contracts
and obligations in this context is rather complex, mostly
because the port combines large-scale industrial activities
(e.g., exporting automobiles and shipyard maintenance) with
small-scale, traditional fishing activities.

The Port Authority set up a project to develop a BPM
system improving license management and control. The
system was specifically developed for the Space Rentals
Department. It supports several administrative tasks and, in
particular, automatically verifies that every client pays its fee
every month. One important requirement concerns having a
permanently updated list of debts and free/occupied zones in
the port.

The BPM system delivered to the Port Authority not only
supports license management and control but also exception
handling using the control switch described in this paper. The
results of this integration were quite satisfactory. The
OpenSymphony platform offers a Web front-end for task
management that was easily integrated in the workers’
environment. Exception handling was tightly coupled with the
other functionality. For instance, each task interface displayed
to the users integrates a button that serves to trigger an
exception. The users manage the exception handling tasks in
the same way as the other tasks, although without the rules
imposed by the modeled business process. The integration
with e-mail and chat also revealed easy because the workers
already used the technology.

Regarding the OpenSymphony implementation, the lack of
support to high-level process specification tools and a
sophisticated enactment service were compensated by the free
access to the platform’s object store, which facilitated the
implementation of recovery actions. Thus our goal to assess
the viability of the control switch was achieved.

Our second goal was quite more difficult to achieve. The
integration of an exception handing mechanism in an
organization requires training and commitment, which were
not available because of the project’s constraints already
mentioned. Furthermore, administrative units such as the
Space Rentals Department do not deal with many
unexpected/true exceptions, at least within the timeframe we
had to develop the project.

Nevertheless, we could follow one such event. We will
describe in detail that particular exception, showing how the
system and workers reacted to the situation. The real names
were changed to preserve anonymity.

The observed exception evolved according to the following
events. Henry, working on the Space Rentals Department, was
updating the client’s database record when someone told him
informally the client had in fact bankrupted. This was

important information, with obvious impact on the Port
Authority. However, the modeled business process did not
consider any specific provisions for handling such an event.
Clearly, this seemed to be an unexpected exception.

In other circumstances, the event would certainly continue
its path through the rumor mill, but in this case the system
offered the users the chance to trigger an exception. In fact,
every task displayed in the browser offered the option to
trigger an exception. Henry used that option.

As a consequence of this action, a task was assigned to
Henry to diagnose the exception. The task appeared on
Henry’s browser along with the other tasks assigned. Then
Henry inserted a brief description of the event in the
corresponding field and classified the exception as
unexpected. The affected instances were automatically defined
by the system: it affected the monthly payment task for which
Henry was the liable person.

Henry did not know the whole implications of the
bankruptcy and lacked authority to make any necessary
provisions, and therefore decided to involve John, his
supervisor, to whom he would delegate the problem. After
being involved, John became the liable person. The diagnosis
task appeared on John’s browser.

Since the situation was unclear, John decided to invoke the
chat tool to discuss with Henry. The collaboration component
launched the chat tool with two users: Henry and John.

During the chat, John realized that another company was
requesting the space, coming to understand the full extent of
the raised problem. Henry also informed John the client’s debt
was about 50.000€. John then decided to change the exception
to a true exception. He also involved Philip from the legal
department in the process.

The collaboration component established a chat between
Henry, John and Philip. After discussing the situation, they
decided that Philip should consult with an external lawyer.
Henry should wait for any news from Henry. The chat session
was then closed.

Philip was later on counseled to notify the client by
registered mail, giving 5 days to pay the debt. Obtaining no
response, they should start a lawsuit action. He then invoked
the chat tool to discuss with Henry and John who should send
the letter and who should follow up the process.

They agreed that Henry would be responsible for sending
the letter. If the client pays the debt within 5 days they would
close the exception handling process. Otherwise they should
advance with the lawsuit action. An ad-hoc monitoring task
was instantiated by John to remember Henry after 5 days.

After 5 days Henry was notified. He recognized the debt
was paid and established again a chat to inform John. John
decided to finish the exception handling process.

The exception handling process managed the interactions
necessary to handle this particular case. We observed it was
easy for the participants to involve an expert from another
department in the process and keep records of what was going
on. The relevant decisions were spread among the participants.
The exception handling process allowed users to improve
overall situation awareness while resolving a problem with the

9

business process but without affecting the organization
behavior. The problem was resolved in an ad-hoc way,
although orchestrated by the control switch.

Thus our preliminary report from the field indicates the
control switch integrates with current BPM technology and
supports exception handling activities, while improving
situation awareness and organizational memory. Though more
long-term experiments are necessary to evaluate the overall
impact on the organization.

VIII. DISCUSSION AND CONCLUSIONS
The Reason's [22] perspective over the organizational

strategies necessary to overcome exceptions is the
fundamental key to understand the limitations and possibilities
of BPM. Many of these systems have been developed under
the Low variability / High analyzability assumption. Several
developments aimed at improving the flexibility of BPM
extended them to the Low variability / Low analyzability and
High variability / High analyzability strategies. The High
variability / Low analyzability strategy has however been
under developed [60].

But High variability / Low analyzability strategies are
fundamental to improve organizational resilience. Our
research not only shows that these strategies may be integrated
with BPM systems but also that they improve situation
awareness and organizational memory.

Also, these strategies give the operators more latitude for
intervening in the system with immediate ad-hoc recovery
actions. But such recovery actions may introduce
inconsistencies in the system. Our solution addresses this
problem by supervising the system evolution during exception
handling through the control switch. The control switch
supports exception diagnosis, ad-hoc recovery actions
(constrained and unconstrained), monitoring tasks, escalating
exceptions to several workers and collaboration between them.

We described the detailed functionality of the control
switch at three different levels: conceptual, organizational and
infrastructural. At the conceptual level, we discussed the
combined operation of the various components that set up the
control switch. The diagnosis component classifies the
exception according to a set of attributes. It supports dynamic
changes to diagnosis and retrospective analysis of the
exception evolution.

The escalation component orchestrates workers in the
exception handling process, thus addressing a fundamental
resilience principle: involving the most knowledgeable
persons to overcome the exceptional situations. The
collaboration component relies on the escalation component to
establish synchronous and asynchronous communication
between the workers involved in the exception handling. The
collaboration component addresses another important
resilience principle: empowering perception, awareness and
decision-making through participation and collaboration. The
recovery component implements the recovery actions
determined by the operators.

Regarding the organizational level, we described in detail

how the operators might use the exception handling process to
respond to non-routine situations. The proposed solution
integrates BPM with several collaborative tools already
common in organizations, such as email and chat tools.

And finally, regarding the infrastructural level, we
illustrated in detail the orchestration of events necessary to
manage the system evolution towards the “normal” behavior
after the occurrence on an exception. The overall functionality
combines end-user interaction with low-level access to the
data structures managed by the enactment service.

The preliminary report from the field indicates the proposed
solution integrated well with OpenSymphony. One
fundamental contribution of this research is tracking the
operators’ communications, interactions, collaborations and
recovery actions, this way building organizational memory. Of
course longitude studies are necessary to further validate this
integration. In particular, future research should analyze the
impact on the system evolution of: (1) increasing the number
of workers involved in the exception handling process; (2)
having a large number of workers concurrently applying
unconstrained ad-hoc interventions in the system; and (3)
having multiple concurrent exceptions triggered by the
system. Also, since we have not implemented consistency
checks, we have not fully explored the differences between
unexpected and true exceptions.

The proposed solution was implemented in a real-world
organization. Nevertheless, more extensive studies are
necessary to understand how to support ad-hoc interventions
in organizations. Future studies should also focus on broader
organizational issues such as organizational learning, decision-
making and collaboration. Another research line, which is
necessary to continue studies in this area, concerns the
development of objective measures of exception handling.

REFERENCES

[1] J. Bowers, G. Button, and W. Sharrock, "Workflow From Within

and Without: Technology and Cooperative Work on the Print
Industry Shopfloor," in Proceedings of the fourth conference on
European Conference on Computer-Supported Cooperative Work,
Stockholm, Sweden, 1995, pp. 51-66.

[2] B. Mutschler, M. Reichert, and J. Bumiller, "Unleashing the
Effectiveness of Process-Oriented Information Systems: Problem
Analysis, Critical Success Factors, and Implications," IEEE
TRansactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, vol. 38, pp. 280-291, 2008.

[3] W. van der Aalst and P. Berens, "Beyond Workflow Management:
Product-Driven Case Handling," in Proceedings of the 2001
International ACM SIGGROUP Conference on Supporting Group
Work, Boulder, Colorado, USA, 2001, pp. 42-51.

[4] B. Weber, M. Reichert, and S. Rinderle, "Change patterns and
change support features – Enhancing flexibility in process-aware
information systems," Data & Knowledge Engineering, vol. 66,
pp. 438-466, 2008.

[5] E. Hollnagel, D. Woods, and N. Levenson, Resilience
Engineering: Concepts and Precepts. Hampshire, England:
Hashgate, 2006.

[6] A. Sheth, D. Georgakopoulos, S. Joosten, M. Rusinkiewicz, W.
Scacchi, J. Wileden, and A. Wolf, "Report from the NSF
Workshop on Workflow and Process Automation in Information
Systems," ACM SIGMOD Record, vol. 25, pp. 55-67, 1996.

10

[7] WfMC, "Workflow Management Coalition - Terminology &
Glossary " WfMC 1999.

[8] F. Leymann, "Web services and business process management,"
IBM Systems Journal, vol. 41, p. 198, 2002.

[9] T. Arora and A. Nirpase, "Next Generation Business Process
Management: A Paradigm Shift," in Proceedings of the 2008 IEEE
Congress on Services - Part I - Volume 00, Washington, DC, 2008,
pp. 81-82.

[10] K. Schmidt, "Of maps and scripts," in GROUP 97 International
Conference on Supporting Group Work, Phoenix, Arizona, 1997,
pp. 138-147.

[11] L. Suchman, Plans and Situated Actions: The problem of human-
machine communication. New York, NY: MIT Press, 1987.

[12] L. Suchman, "Do categories have politics?," Computer Supported
Cooperative Work, vol. 2, pp. 177-190, 1993.

[13] T. Winograd and F. Flores, Understanding computers and
cognition: A new foundation for design. Norwood, New Jersey:
Ablex, 1986.

[14] CSCW, Computer Supported Cooperative Work, vol. 3, 1994.
[15] T. Winograd, "Designing a new foundation for design,"

Communications of ACM, vol. 49, pp. 71-74, 2006.
[16] J. Taylor and S. Virgili, "Why ERPs Disappoint: the Importance of

Getting the Organisational Text Right," in ERP Systems and
Organisational Change London: Springer, 2008, pp. 59-84.

[17] T. Herrmann and K. Loser, "Vagueness in models of socio-
technical systems," Behaviour & Information Technology, vol. 18,
pp. 313-323, 1999.

[18] R. Grinter, "Workflow Systems: Occasions for Success and
Failure," Computer Supported Cooperative Work, vol. 9, pp. 189-
214, 2000.

[19] H. Simon, The Sciences of the Artificial. Cambridge, USA: The
MIT Press, 1996.

[20] K. Vicente, Cognitive Work Analysis: Toward Safe, Productive,
and Healthy Computer-Based Work: Lawrence Erlbaum
Associates, Inc., 1999.

[21] J. Rasmussen and A. Jensen, "Mental procedures in real-life tasks :
a case-study of electronic trouble shooting," Ergonomics, vol. 17,
pp. 293-307, 1974.

[22] J. Reason, Managing the risks of Organizational Accidents.
England: Ashgate, 1997.

[23] C. Perrow, Organizational Analysis: A Sociological View. United
Kingdom Tavistock Publications, 1970.

[24] H. Saastamoinen, "On the Handling of Exceptions in Information
Systems," University of Jyväskylä, PhD Thesis, 1995.

[25] J. Eder and W. Liebhart, "The Workflow Activity Model WAMO,"
in Proceedings of the Third International Conference on
Cooperative Information Systems, Vienna, Austria, 1995, pp. 87-
98.

[26] D. Worah and A. Sheth, "Transactions in Transactional
Workflows," in Advanced Transaction Models and Architectures:
Kluwer, 1997.

[27] G. Alonso, C. Hagen, D. Agrawal, A. El Abbadi, and C. Mohan,
"Enhancing the fault tolerance of workflow management systems,"
IEEE Concurrency, vol. 8, pp. 74 -81, 2000.

[28] F. Casati, "Models, Semantics, and Formal Methods for the Design
of Workflows and their Exceptions," Politecnico di Milano, PhD
Thesis, 1998.

[29] D. Chiu, Q. Li, and K. Karlapalem, "WEB Interface-Driven
Cooperative Exception Handling in ADOME Workflow
Management System," Information Systems, vol. 26, pp. 93-120,
2001.

[30] S. Sadiq, "On Capturing Exceptions in Workflow Process
Models," in Proceedings of the 4th International Conference on
Business Information Systems, Poznan, Poland, 2000.

[31] Z. Luo, "Knowledge sharing, Coordinated Exception Handling,
and Intelligent Problem Solving for Cross-Organizational Business
Processes," Department of Computer Sciences, University of
Georgia, PhD Thesis, 2001.

[32] R. Muller, U. Greiner, and E. Rahm, "AgentWork: a workflow
system supporting rule-based workflow adaptation," Data &
Knowledge Engineering, vol. 51, pp. 223-256, 2004.

[33] Q. Chen and U. Dayal, "A transactional nested process
management system," in Proceedings of the Twelfth International
Conference on Data Engineering, New Orleans, Louisiana, 1996,
pp. 566-573.

[34] C. Combi, F. Daniel, and G. Pozzi, "A Portable Approach to
Exception Handling in Workflow Management Systems," in On
the Move to Meaningful Internet Systems 2006: CoopIS, DOA,
GADA, and ODBASE, OTM Confederated International
Conferences, CoopIS, DOA, GADA, and ODBASE 2006. vol.
4275, R. Meersman and T. Zahir, Eds. Heidelber: Springer, 2006,
pp. 201-218.

[35] J. Eder and W. Liebhart, "Workflow Recovery," in first IFCIS
International Conference on Cooperative Information Systems
(CoopIS), Brussels, Belgium, 1996, pp. 124-134.

[36] P. Heinl, "Exceptions during Workflow Execution," in
Proceedings of the EDBT Workshop on Workflow Management
Systems, Valencia, Spain, 1998.

[37] F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi, "Specification and
Implementation of Exceptions in Workflow Management
Systems," ACM Transactions on Database Systems, vol. 24, pp.
405-451, 1999.

[38] M. Adams, A. Hofstede, D. Edmond, and W. Van der Aalst,
"Worklets: a service-oriented implementation of dynamic
flexibility in workflows," in On the Move to Meaningful Internet
Systems 2006: CoopIS, DOA, GADA, and ODBASE, OTM
Confederated International Conferences, CoopIS, DOA, GADA,
and ODBASE 2006. vol. 4275, R. Meersman and T. Zahir, Eds.
Heidelber: Springer-Verlag, 2006, pp. 291-308.

[39] Z. Li, M. Zhou, and N. Wu, "A Survey and Comparison of Petri
Net-Based Deadlock Prevention Policies for Flexible
Manufacturing Systems," IEEE TRansactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews, vol. 38, pp.
173-188, 2008.

[40] C. Ellis, K. Keddara, and G. Rozenberg, "Dynamic change within
workflow systems," in Proceedings of Conference on
Organizational Computing Systems, Milpitas, CA, 1995, pp. 10-
21.

[41] M. Reichert, P. Dadam, and T. Bauer, "Dealing with Forward and
Backward Jumps in Workflow Management Systems," Software
and Systems Modeling, vol. 2, pp. 37-58, 2003.

[42] M. Weske, "Formal foundation and conceptual design of dynamic
adaptations in a workflow management system," in Proceedings of
the 34th Annual Hawaii International Conference on International
Conference on System Sciences, 2001, pp. 2579-2588.

[43] M. Adams, A. Hofstede, W. Van der Aals, and D. Edmond,
"Dynamic, Extensible and Context-Aware Exception Handling for
Workflows," in Proceedings of the OTM Conference on
Cooperative information Systems vol. 4803, F. Curbera, F.
Leymann, and M. Weske, Eds. Heidelberg: Springer-Verlag, 2007,
pp. 113-130.

[44] D. Grigori, F. Casati, U. Dayal, and M. Shan, "Improving Business
Process Quality through Exception Understanding, Prediction, and
Prevention," in Proceedings of the 27th international Conference
on Very Large Data Bases, Rome, Italy, 2001, pp. 159-168.

[45] B. Weber and W. Wild, "An Agile Approach to Workflow
Management," in Proceedings of Modellierung 2004, Marburg,
Germany, 2004, pp. 187-201.

[46] W. van der Aalst and T. Basten, "Inheritance of workflows: an
approach to tackling problems related to change," Theoretical
Computer Science, vol. 200, pp. 125-203, 2002.

[47] S. Rinderle, M. Reichert, and P. Dadam, "Evaluation of
Correctness Criteria for Dynamic Workflow Changes," in
Conference on Business Process Management 2003, Eindhoven,
The Netherlands, 2003, pp. 41-57.

[48] H. Mourão and P. Antunes, "Exception handling through a
workflow," in On the Move to Meaningful Internet Systems 2004:
CoopIS, DOA, and ODBASE: OTM Confederated International
Conferences, CoopIS, DOA, and ODBASE. vol. 3290, R.
Meersman and Z. Tari, Eds. Heidelberg: Springer-Verlag, 2004,
pp. 37-54.

[49] A. Agostini and G. De Michelis, "A light Workflow Management
System Using Simple Process Models," Computer Supported
Cooperative Work, vol. 9, pp. 335-363, 2000.

[50] N. Hayes, "Work-Arounds and Boundary Crossing in a High Tech
Optronic Company: The Role of Co-Operative Workflow
Technologies," Computer Supported Cooperative Work, vol. 9, pp.
435-455, 2000.

[51] N. Guimarães, P. Antunes, and A. Pereira, "The integration of
workflow systems and collaboration tools," in Workflow

11

Management Issues and Interoperability. vol. 164, A. Dogac, L.
Kalinichenko, M. Ozsu, and A. Sheth, Eds. Heidelberg: Springer
Verlag, 1997, pp. 222-245.

[52] A. Bernstein, "How can cooperative work tools support dynamic
group process? bridging the specificity frontier," in Proceedings of
the 2000 ACM Conference on Computer Supported Cooperative
Work, Philadelphia, 2000, pp. 279-288.

[53] M. Klein and C. Dellarocas, "A Knowledge-Based Approach to
Handling Exceptions in Workflow Systems," Computer Supported
Cooperative Work, vol. 9, pp. 399-412, 2000.

[54] H. Mourão and P. Antunes, "A Collaborative Framework for
Unexpected Exception Handling," in Groupware: Design,
Implementation, and Use. vol. 3706, H. Fuks, S. Lukosch, and A.
Salgado, Eds. Heidelberg: Springer-Verlag, 2005, pp. 168-183.

[55] J. Wang, W. Tepfenhart, and D. Rosca, "Emergency Response
Workflow Resource Requirements Modeling and Analysis," IEEE
TRansactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, vol. 39, pp. 270-283, 2009.

[56] C. Sapateiro and P. Antunes "An Emergency Response Model
Toward Situational Awareness Improvement," in International
Conference on Information Systems for Crisis Response and
Management, Göteborg, Sweden, 2009.

[57] OpenSymphony, "The OpenSymphony Project."
[58] H. Mourão and P. Antunes, "Supporting Effective Unexpected

Exceptions Handling in Workflow Management Systems," in
Proceedings of the 22nd Annual ACM Symposium on Applied
Computing, Special Track on Organizational Engineering, Seoul,
Korea, 2007, pp. 1242-1249.

[59] H. Mourão, "Supporting Effective Unexpected Exception Handling
in Workflow Management Systems within Organizational
Contexts," University of Lisboa, Doctoral Dissertation, 2008.

[60] W. van der Aalst, M. Weske, and D. Grunbauer, "Case handling: A
new paradigm for business process support," Data & Knowledge
Engineering, vol. 53, pp. 129-162, 2005.

