
1

Adding a Resilience-Enhanced Component to the WfMC Reference
Architecture

Pedro Antunes1, Hernâni Mourão2

1Faculty of Sciences of the University of Lisboa, Portugal
paa@di.fc.ul.pt

2Escola Superior de Ciências Empresariais, Instituto Politécnico de Setúbal, Portugal
hrmourao@gmail.com

Abstract

This paper discusses the extension of the Workflow

Management Coalition (WfMC) reference architecture to
support organizational resilience. We propose a workflow
component responsible for moving control between the
system and the operators. The internal architecture of this
component is discussed in detail, exposing the
fundamental resilience properties: diagnosis, escalation,
collaboration, monitoring and recovery.

Keywords: Workflow Management, Organizational
Resilience, Resilient Workflow.

1. Introduction

Various organizations optimize their business through

process orientation. Workflow Management Systems
(WfMSs) support this process view, relinquishing routine
coordination tasks from humans, increasing automation
and easing structural changes in the organizations through
better service decomposition. This process orientation has
however one fundamental problem: assuming that
organizations formalize business processes down to the
task-level details required by WfMSs. But that is often not
the case [1]. Firstly, there is a trade-off between
responsiveness and formalization. High formalization
makes organizations less responsive to change, while low
formalization increases responsiveness but challenges the
systems�’ capability to control the business.

Secondly, many service-oriented organizations deal
with high levels of informality and ambiguity, and their
business processes must avoid the details required by
WfMSs. We thus find two conflicting process-oriented
views, usually referred as human-oriented, when human
discretion is assumed; and machine-oriented, when it is
assumed that the technology will take control over the
business. These views should be taken into account when
building the business process management system.
WfMSs have been developed with a strong focus on the
machine-oriented view leading to a difficult acceptance by
organizations [2].

But the problem goes beyond this human versus
machine conflict. Nowadays one major challenge faced by
organizations concerns resilience [3]: the capability to
resist major business disruptions due to unforeseeable,

unexpected or catastrophic reasons, leading the systems
beyond the limits without serious human, physical or
financial losses. Many organizations, e.g. aviation and
banking, are adopting mechanisms to preserve themselves
when facing major business disruptions. These
mechanisms usually posit [3]: (1) flexibility understanding
and acting upon the evolving context; (2) reliance on the
experience of most knowledgeable people; and (3)
capability to make decisions lacking full insights about the
situation.

The development of resilient WfMSs emphasizes the
human oriented perspective, since human judgement is
fundamental to make decisions under unpredictable
contexts. From our point of view, the major technical
problems concern the integration between the human and
machine views:
• Providing process guidance in contexts where work

models fail to comply with the reality;
• Supporting dynamically evolving processes under

emergency situations, though facilitating the transition
to normal operations;

• Moving control from the technology to the operators
whenever necessary;

• Supporting unpredictable actors�’ roles and work
contexts.

This paper proposes an architectural approach aiming
to reconcile the human and machine views and to increase
organizational resilience. The paper also discusses in detail
the components and mechanisms necessary to incorporate
resilience properties into WfMSs. The paper is organized
as follows. In the next section we elaborate the conceptual
foundations of this research. Section 3 discusses in detail
the architectural approach. Section 4 highlights some
implementation details. And section 5 discusses the main
implications of the proposed approach and draws some
conclusions.

2. Conceptual Foundations

A business process is defined in [4] as a collection of

activities tied together by a common goal and precedence
relations; and workflow management as the automated
coordination of these activities to carry out the business
process. According to the Workflow Management
Coalition (WfMC) [5], the WfMS infrastructure is
composed by an enactment service, which manages

Pedro Antunes
Antunes, P. and H. Mourão (2009) Adding a Resilience-Enhanced Component to the Wfmc Reference Architecture. Proceedings of the 2009 13th International Conference on Computer Supported Cooperative Work in Design (CSCWD 2009) Santiago, Chile. IEEE.

2

workflow instances; client components, which control the
user interactions; and other components necessary to store
and interpret work models, to interoperate with other
workflow services, and to monitor the system behaviour.
The notion of workflow management is machine-oriented:
it assumes the computer control of the business process
based on the normative engagement of a work model [6].

But we should also analyze business processes
according to the contextualization necessary to carry out
the intended goals under different task conditions [7].
According to this human-oriented perspective, work
models guide actors in a space of available actions but do
not assume a normative engagement. The control is in the
hands of the humans and not the technology.

And finally, we have to consider business processes as
one bit of a larger organizational management strategy that
may be best understood using the notion of exception [8].
Exceptions occur whenever the available repeatable
processes fail to respond to a dynamic business context,
humans fail to act upon the situations, or the technology
constrains the operators conducting the necessary actions
to overcome the situations.

The organizations tend to overcome exceptions using
three strategies related with the exceptions�’ frequency and
degree of exceptionality:
• Low frequency / Low exceptionality �– Redesigning

procedures and rules.
• Low frequency / High exceptionality �– Mixed strategy

relying on training and procedures.
• High frequency / Low exceptionality �– Mixed strategy

relying on training and procedures.
• High frequency / High exceptionality �– Responding

with discretionary actions based on training and
experience.

Organizations thus operate with a continuum of
structured, mixed and unstructured processes [4]. Several
researchers studied the impact of exceptions on WfMSs.
The major problem is that most WfMSs adopt the
machine-oriented view over business processes and
therefore are adapted to the Low frequency / Low
exceptionality strategy. This means that WfMSs overcome
exceptions if the handling strategy is restricted to the
redesign of work models under strict control from the
enactment service. This also means that organizations
must look elsewhere to overcome situations falling outside
this strategy.

We typify the Low frequency / Low exceptionality
exceptions in [9]: (1) basic failures, related to failures in
the underlying technology; (2) application failures, related
with task execution; and (3) expected exceptions, events
that may be predicted during the modelling phase but that
do not correspond to the �“normal�” behaviour. WfMSs may
automatically handle basic failures. Several techniques
exist to recover from application failures; most of them are
based on advanced database transaction techniques that
guarantee data integrity and recovery. However, [9] points
out that not every possible exception may be resolved this
way and suggest escalating such failures into expected
exceptions.

Researchers also developed mechanisms to
automatically handle expected exceptions. Some rely on

triggers to initiate predefined handling procedures [10,
11]. Others apply Artificial Intelligence techniques to
identify prior handling procedures that could be
automatically applied to similar situations. Naturally, it
has also been suggested the expected exceptions that
cannot be handled with these techniques should be
transformed into unexpected exceptions.

The exceptions related with Low frequency / High
exceptionality and High frequency / Low exceptionality
require human involvement. These exceptions may be
categorized as unexpected exceptions [9]. The unexpected
exceptions result from incomplete or erroneous designs,
changes in the business manoeuvre, and issues too
complex to be handled by the work models [12]. Handling
unexpected exception requires a mixed control strategy,
combining the human control necessary to understand the
situation and make decisions, with the control from the
workflow enactment service necessary to preserve the
work models correctness.

Several techniques have been developed to support
human interventions in business processes at runtime [13,
14]. For instance, many WfMSs allow the operators to
insert activities not specified in the work model but
permitted by the enactment service. When more extensive
changes are necessary, several WfMSs allow replacing
whole work models in runtime. These techniques lead to
dynamic and adaptive WfMS and represent one important
approach to increase WfMS resilience. On the occurrence
of unexpected exceptions, the operators may migrate
running workflows to new work models without stopping
or breaking the system [15].

Two types of interventions are considered [13]:
evolutionary changes and ad-hoc structured changes.
Evolutionary changes enact a new work model and thus
have a broad and permanent impact in the WfMS. The ad-
hoc structured changes are typically applied to a small set
of workflow instances and thus have a transient impact.
But these types of changes must be executed under the
system control to preserve model correctness (avoid
deadlocks, unreachable states and other problems). These
techniques apply a set of automated checks to avoid
violating the work model correctness.

The High frequency / High exceptionality situations
emphasize the limitations mentioned above. The
constraints imposed by correctness checks are beneficial to
the WfMS operation but limit the operators. High
frequency / High exceptionality situations usually involve
human judgement under time pressure and incomplete
information. In these situations ad-hoc unstructured
changes to the work models may be necessary to
overcome the situation, even at the cost of leading the
WfMS to an incorrect state. But few techniques have been
developed to integrate ad-hoc unstructured changes in
WfMSs. [16] integrated a WfMS with collaborative tools,
allowing to pass control from the WfMS to collaborative
tools when an unexpected exception occurs. But no
support is considered to continue with the normal WfMS
operation after the exception is handled. Another
contribution was proposed by [17], who developed a
mechanism to determine which type of control is more
suitable to the type of exception that has occurred and

3

invoke adequate tools, including tools supporting ad-hoc
unstructured changes.

2.1. Exception handling strategies

From the above discussion we realise that automated

exception handling techniques are crucial to increase
resilience. However, when unexpected exceptions occur,
humans become a necessary component supporting
resilience. Regarding the human role, the evolutionary
techniques increase resilience by allowing migrating
workflow instances towards new work models. The ad-hoc
structured techniques further increase resilience by
allowing more immediacy and less planning in the actions
taken by the operators. Finally, the ad-hoc unstructured
activities provide an increased level of resilience by
removing the model correctness constraints and giving
wider latitude of action to the operators.

In Figure 1 we classify the existing exception handling
techniques according to two criteria: control and planning.
The first criterion classifies the type of control. Three
categories are defined: mechanistic, restricted humanistic
and unrestricted humanistic. The second criterion concerns
the immediacy of response to exceptions. Two categories
are identified: planned and ad-hoc.

The systems that automatically handle (basic and
application) failures are classified as mechanistic, since
control is totally exerted by the technology. Furthermore,
they require the reactions be planned in the design stage.
Considering these constraints, they offer low resilience
levels. The expected exception handling techniques offer
more flexible reaction mechanisms, still these reactions
have to be planned and control is totally exerted by the
technology.

The evolutionary techniques allow the operators to
dynamically change the planned organizational behaviour.
The interventions are restricted by the model correctness
criteria, but there is a significant increase in human
control. Considering that the evolutionary techniques
usually have broad impact on the business process, such
reactions must be carefully planned, although fewer
restrictions are imposed when compared with the previous
techniques. The ad-hoc structured techniques, having less
impact on the business process, are also less demanding in
terms of planning and offer increased human control and
flexibility to react to unforeseen events. Nevertheless,
human intervention is to some extent limited by the
technology, the reason why we classify these techniques in
the restricted humanistic category.

We finally find the ad-hoc unstructured techniques.
Here, resilience is at its maximum degree since
interventions may be fully ad-hoc: non-planned and
unrestricted by the technology.

Summarizing the whole scenario, we observe that, to
increase resilience, organizations must integrate exception-
handling techniques covering the path leading towards
unrestricted humanistic and ad-hoc reactions. However, as
we have seen, few techniques currently support ad-hoc
unstructured reactions in WfMSs. Considering this
scenario, our research goals are centred on the integrated
support to exception handling, covering not only

mechanistic and restricted humanistic control but also
unrestricted humanistic control. In the next section we
describe in detail our approach.

Figure 1. Classification of exception handling techniques
according to resilience criteria

3. Architectural Approach

The WfMC reference model [18] has been widely

adopted in industry. It fails however to integrate the level
of resilience described in the previous section, since it
does not foresee to move away from the restricted towards
the unrestricted humanistic control.

To support unrestricted humanistic control, we
extended the reference model in the way represented in
Figure 2. The change concerns one new component,
designated control switch, responsible for moving control
between the workflow engine and the operators whenever
an unexpected event is detected. This capability requires
direct interaction with the workflow enactment service and
the process definition tools to support runtime changes in
workflow instances. In some situations it may also be
necessary to monitor the evolution of the enactment
service using the available administration and monitoring
tools. In the following we will further detail the control
switch.

Fig. 2: Extended reference model

The proposed architectural change is based on the
following general behaviour:
1. Under normal conditions, the workflow instances are

managed by the enactment service;

4

2. The occurrence of basic and application failures is
handled by the enactment service, using transaction-
processing techniques. Whenever these techniques
fail, the exception is propagated as an expected
exception;

3. The occurrence of an expected exception triggers the
corresponding handling procedures, managed by the
enactment service. These procedures are predefined at
design time. If a trigger is not available or is incapable
to resolve the situation, the exception is propagated as
unexpected exception;

4. The occurrence of an unexpected exception invokes
the control switch;

5. The control switch will determine which workflow
instances will continue to be managed by the
enactment service and which instances the operators
will manage themselves;

6. The control switch will continue its operation until the
operators are able to bring back all workflow
instances to a correct state (which requires performing
correctness checks).

Regarding the step 5 mentioned above, the control
switch must also determine what type of intervention is
necessary: (1) redesign the work models with support from
the process definition tools (evolutionary changes) and
constrained by the workflow engine; (2) apply changes to
a set of workflow instances (ad-hoc structured changes)
constrained by the workflow engine; or (3) apply ad-hoc
unstructured changes independently from any constraints.
This behaviour is controlled by a special workflow
managed by the enactment service. I.e., the WfMS
manages the organization�’s business processes plus an
exception handling workflow responsible for coordinating
the exception handling. More concrete details about this
workflow will be given later.

The control switch requires several components to
execute the following services (see Figure 3): (1) detect
the occurrence of exceptions, which may be raised by the
WfMS or by an operator; (2) support recovery actions,
including quasi-atomic actions (cancel, jump, etc.) and
dynamic model changes, all of them performed by the
enactment service; (2) maintain a log of all the relevant
events occurring in the control switch; and (3) interface
with the users.

3.1. User interface component

Fig. 3: Control switch components

The user interface component is specified in more
detail in Figure 3, including: (1) diagnosis component,
collecting relevant data about the situation; (2) escalation
component, allowing to involve other users in the process;
(3) collaboration component, supporting collaboration and
decision making; (4) monitoring component, allowing
users to follow events occurring in the system; and (5)
recovery component, supporting the users invoking
recovery actions.

The diagnosis component collects relevant data from
the users and the process definition tools, workflow engine
and monitoring tools [19]:
• Detection �– automatic or manual;
• Event type �– the type of event that generated the

exception (e.g. temporal event);
• Scope �– instance when only a set of workflow

instances was affected; or model when the business
model was affected;

• Affected instances �– list of affected instances;
• Affected tasks �– list of affected tasks;
• Affected models �– list of affected work models;
• Exception description �– short description of what

occurred, written by the users;
• Type of intervention �– evolutionary, ad-hoc

structured or ad-hoc unstructured;
• Intervention details �– short description of what should

be done to resolve the exception;
• Organizational impact �– employee, peer, supervisor or

group;
The users concurrently do the diagnosis of the

situation. The escalation component serves to bring more
people to the exception handling process. The escalation
considers four decision levels: (1) the operator; (2) the
peer-level allows multiple peers to concurrently handle the
exception; (3) the supervisor; and (4) the group, where
multiple actors collaborate in the process.

The collaboration component aims to increase the
situation awareness by using adequate collaboration tools.
The monitoring component serves to specify and
instantiate ad-hoc tasks aiming to collect specific
information about the system and deliver it to the users,
thus allowing them to follow the system evolution.
Finally, the recovery component provides a user-interface
to the services available in the control switch to operate
the enactment service.

4. Implementation

The proposed architecture was implemented in
OpenSymphony [20]. The details regarding this
implementation have been divided in two sections, one
related with the architecture implementation and the other
with the exception handling workflow.

4.1. Architecture implementation

In Figure 4 we overview the integration between the
control switch and the exception handling service. The
following core services are available: (1) concurrent
management of exception detection triggers; (2)

5

instantiation of the exception handling workflow; (3)
notification of users; (4) escalating the exception to other
users; (5) integration of tools supporting collaborative
diagnosis, awareness and decision making; (6) invocation
of monitoring actions to obtain feedback about the system
behaviour; (7) concurrent users�’ recovery interventions;
(8) and recovery actions.

The exception handling workflow was implemented as
an OpenSymphony workflow. The adopted external
collaboration tools were e-mail and chat tools, which may
be selected according to the users�’ preferences.

Fig. 4: Detailed architecture and core services

4.2. Exception handling workflow

When an exception is detected, the OpenSymphony
instantiates the exception handling workflow. By default,
the exception is always associated to a specific workflow
instance and task, for which there is always a user known
by the system. This user is therefore the one that is
contacted with a request to characterize the exception and
apply any necessary recovery actions. The diagnosis task
demands the user to classify the exception according to
several categories (type of intervention, description, etc.).
Some details about the exception are automatically given
by the system whenever possible, e.g. affected instances
and tasks). Immediately after this task, the exception
handling workflow activates the following parallel tasks:
• Diagnosis, which may be continuously and

concurrently updated by several users;
• Escalating the exception to other users, which results

in additional running instances of the exception
handling workflow requiring assistance from the
selected users;

• Collaborating, allowing the users affected by the same
exception to use the chat or mail tools;

• Recovery, allowing users to invoke quasi-atomic
recovery actions or applying dynamic changes to the
workflow engine;

• Monitoring; allowing to instantiate ad-hoc data
acquisition and notification tasks in the workflow
engine.

When any user considers that the exceptional situation
may have been resolved, he may execute an additional
task, which suspends the control switch operation and
verifies model correctness. If any inconsistency is

detected, the exception handling workflow will continue
operation and the users will be kept involved in the
process. When no inconsistency is detected the exception
handling workflow is terminated.

More details about the exception handling workflow
and its implementation in OpenSymphony can be found in
[14, 21]. What we would like to emphasise here is that the
exception handling workflow is implemented at the same
system level and with the same tools as any other
workflow. The same comment applies to most of the core
services. For instance, the diagnosis task is implemented
with a set of queries to the workflow database. The only
exception regards the recovery service, as it has to
interface at low-level with the workflow engine to initiate
tasks, suspend tasks, etc.

5. Discussion and Conclusions

The [8] perspective over the organizational strategies

necessary to overcome exceptions is the fundamental key
to understand the limitations and possibilities of WfMS.
These systems have been mostly developed under the Low
frequency / Low exceptionality assumption. Several
developments, coined as flexible workflow, may extend
the WfMS functionality to the Low frequency / High
exceptionality and High frequency / Low exceptionality
strategies. The High frequency / High exceptionality
strategy has unfortunately been under developed. To
increase organizational resilience, the developers must
figure out strategies capable to maintain WfMS
functionality under the High frequency / High
exceptionality events.

This paper shows that High frequency / High
exceptionality events should be tackled with humanistic
unrestricted control and had-hoc planning. Under these
circumstances, the operators should be able to apply
immediate actions while avoiding any control imposed by
the WfMS to preserve model correctness.

Of course we find here a trade-off between flexibility
and responsiveness on the one hand; and model
correctness on the other hand. In this paper we propose an
architectural scheme to manage the system evolution and
trajectory during exception handling that affords dealing
with the trade-off in runtime.

Our architectural solution defines a control switch
aiming to move control between the workflow engine and
the system operators. This switch is fundamental to
support unrestricted humanistic interventions whenever
the operators perceive them as necessary. Independently
from the specific behaviour of the control switch, the
developers should always consider extending WfMSs with
this important component.

In this paper we also propose a detailed functionality
for the control switch. This includes the combined
operation of an exception handling workflow with several
components responsible for interfacing with the workflow
engine and the operators. Regarding the interface with the
operators, the proposed solution involves five components
responsible, respectively, for the exception diagnosis,
escalation and monitoring; and the support to collaboration
and recovery actions.

6

The developers should regard the escalation and
collaboration components as most important. The
escalation component is responsible for involving
additional operators in the exception handling process,
thus addressing a fundamental resilience principle:
involving the most knowledgeable persons to overcome
the exceptional situations. The escalation component relies
on the WfMS itself to involve and orchestrate these
persons. The collaboration component addresses another
important resilience principle: empowering perception,
awareness and decision-making abilities through
participation and collaboration. The developers may
consider implementing this component with several tool
already common in organizations, such as email and chat
tools.

In summary, the proposed architecture integrates the
WfMS infrastructure with other organizational systems
and tools, with the fundamental goal to orchestrate the
human interventions necessary to overcome the
exceptional situations. Of course many issues remain to be
addressed by the developers. In particular, they should
carefully consider that releasing control from the operators
back to the workflow engine may take some time and,
during that period, the operators may apply wrong actions
that may put the system at risk. Therefore, additional risk
management procedures may have to be considered,
including training, undo-redo functionality and the
development of awareness mechanisms.

Acknowledgements

This paper was partially supported by: the Portuguese
Foundation for Science and Technology, Project FCT
(PTDC/EIA/67589/2006).

References

[1] L. Suchman, "Office procedure as practical action: models
of work and system design," ACM Transactions on Office
Information Systems, vol. 1, pp. 320-328, 1983.

[2] W. Van der Aalst and P. Berens, "Beyond Workflow
Management: Product-Driven Case Handling," in
Proceedings of the 2001 International ACM SIGGROUP
Conference on Supporting Group Work, Boulder,
Colorado, USA, 2001, pp. 42-51.

[3] E. Hollnagel, D. Woods, and N. Levenson, Resilience
Engineering: Concepts and Precepts. Hampshire, England:
Hashgate, 2006.

[4] A. Sheth, D. Georgakopoulos, S. Joosten, M.
Rusinkiewicz, W. Scacchi, J. Wileden, and A. Wolf,
"Report from the NSF Workshop on Workflow and Process
Automation in Information Systems," ACM SIGMOD
Record, vol. 25, pp. 55-67, 1996.

[5] WfMC, "Workflow Management Coalition - Terminology
& Glossary " WfMC 1999.

[6] K. Schmidt, "Of maps and scripts," in GROUP 97
International Conference on Supporting Group Work,
Phoenix, Arizona, 1997, pp. 138-147.

[7] L. Suchman, Plans and Situated Actions: The problem of
human-machine communication. New York, NY: MIT
Press, 1987.

[8] J. Reason, Managing the risks of Organizational Accidents.
England: Ashgate, 1997.

[9] J. Eder and W. Liebhart, "The Workflow Activity Model
WAMO," in International Conference on Cooperative
Information Systems (CoopIS '95), Austria, 1995.

[10] D. Chiu, Q. Li, and K. Karlapalem, "WEB Interface-Driven
Cooperative Exception Handling in ADOME Workflow
Management System," Information Systems, vol. 26, pp.
93-120, 2001.

[11] Z. Luo, "Knowledge sharing, Coordinated Exception
Handling, and Intelligent Problem Solving for Cross-
Organizational Business Processes," Department of
Computer Sciences, University of Georgia, PhD Thesis,
2001.

[12] P. Heinl, "Exceptions during Workflow Execution," in
Proceedings of the EDBT Workshop on Workflow
Management Systems, Valencia, Spain, 1998.

[13] W. Van der Aalst and T. Basten, "Inheritance of
workflows: an approach to tackling problems related to
change," Theoretical Computer Science, vol. 200, pp. 125-
203, 2002.

[14] H. Mourão and P. Antunes, "Supporting Effective
Unexpected Exceptions Handling in Workflow
Management Systems," in Proceedings of the 22nd Annual
ACM Symposium on Applied Computing, Special Track on
Organizational Engineering, Seoul, Korea, 2007, pp. 1242-
1249.

[15] M. Reichert, P. Dadam, and T. Bauer, "Dealing with
Forward and Backward Jumps in Workflow Management
Systems," Software and Systems Modeling, vol. 2, pp. 37-
58, 2003.

[16] N. Guimarães, P. Antunes, and A. Pereira, "The integration
of workflow systems and collaboration tools," in Workflow
Management Issues and Interoperability. vol. 164, A.
Dogac, L. Kalinichenko, M. Ozsu, and A. Sheth, Eds.
Heidelberg: Springer Verlag, 1997, pp. 222-245.

[17] A. Bernstein, "How can cooperative work tools support
dynamic group process? bridging the specificity frontier,"
in Proceedings of the 2000 ACM Conference on CSCW,
Philadelphia, 2000, pp. 279-288.

[18] D. Hollingsworth, "Workflow Management Coalition: The
Workflow Reference Model," Workflow Management
Coalition, Hampshire, UK 1995.

[19] H. Mourão and P. Antunes, "A Collaborative Framework
for Unexpected Exception Handling," in Groupware:
Design, Implementation, and Use. vol. 3706, H. Fuks, S.
Lukosch, and A. Salgado, Eds. Heidelberg: Springer-
Verlag, 2005, pp. 168-183.

[20] OpenSymphony, "The OpenSymphony Project."

[21] H. Mourão, "Supporting Effective Unexpected Exception
Handling in Workflow Management Systems within
Organizational Contexts," University of Lisboa, Doctoral
Dissertation, 2008.

