
Supporting Effective Unexpected Exceptions Handling in
Workflow Management Systems

Hernâni Mourão
Escola Sup. de Ciências Empresariais and LASIGE

Campus do IPS – Estefanilha
2914-503 Setúbal, Portugal

+351265709431

hmourao@esce.ips.pt

Pedro Antunes
Faculdade de Ciências and LASIGE

Faculdade de Ciências/UL, Campo Grande – Edifício C6
1749-016 Lisboa, Portugal

+351217500605

paa@di.fc.ul.pt

ABSTRACT
This paper proposes a novel architectural framework handling
effective unexpected exceptions in workflow management systems
(WfMS). Effective unexpected exceptions are events for which
the organizations lack handling strategies. Unstructured human
interventions are necessary to overcome these situations, but clash
with the type of model control currently exercised by WfMS. The
proposed framework uses the notion of map guidance to
orchestrate these human interventions. Map guidance empowers
users with contextual information about the WfMS and
environment, enables the interruption of model control on the
affected instances, supports collaborative exception handling and
facilitates regaining model control after the exception has been
resolved. The framework implementation in the Open Symphony
open source platform is also described.

Categories and Subject Descriptors
H.4.1 [Information Systems Applications]: Office Automation –
workflow management, groupware, human factors.

General Terms
Design, Reliability, and Human Factors.

Keywords
workflow management systems; unexpected exceptions;
collaboration support; and unstructured organizational activities.

1. INTRODUCTION
The work processes carried out by organizations in their daily
operations have been identified to belong to a continuum ranging
from totally unstructured to completely structured [28]. However,
the majority of the available organizational information systems
tend to fall close to both sides of the spectrum boundaries, thus
leaving a significant gap in between. WfMS, based on work
models, play the role of scripts falling close to the highly

structured boundary [27]. Closer to the other end of the spectrum
limits, Suchman [29] proposes the notion of maps, which position
and guide actors in a space of available actions, providing the
context awareness necessary to make decisions but avoiding the
normative trait. To support the continuum of organizational needs,
WfMS should cope with the whole spectrum of structured and
unstructured activities integrating both procedural and
non-procedural work [12]. In the WfMS community,
nonprocedural work has been designated “exception handling.”

Eder and Liebhart’s [9] classification of expected and unexpected
exceptions has been widely used, since it enables a division
between the exceptions that can be predicted in the design phase
from those that can not. In our work, we advocate a novel
approach to exception classification, assuming a continuum from
expected to unexpected exceptions. This paper is focused on the
exceptions that fall close to the unexpected limits of the spectrum,
meaning that nothing similar has happened before from which the
organization can draw any prearranged behavior. This type of
exceptions requires human intervention and an innovative posture
from the organization. As no model is available, human reactions
should be map guided, according to Suchman’s definition. From
now on we will refer to this type of exceptions as effective
unexpected exceptions, or unexpected exceptions when no
distinction is necessary.

Our framework is supported on the statement of completeness
requirement expressed in [20]. In summary, this requirement
states that an exception handling system should consent users to
carry out recovery actions without restrictions, i.e., the flexibility
of the exception handling system should be on par with the
flexibility actors have on their daily activities when working
without system control.

This paper is structured in the following way. We start by
describing the two examples used throughout the paper to
motivate and illustrate our approach. Then, in section two, we
revise the related work and to identify the scope of the framework.
Section three describes the framework, addressing the above
mentioned dichotomy: maintain model-based work whenever
possible and change to map guidance whenever necessary. We
also classify exception handling strategies. In section four we
describe the framework’s implementation in the Open Symphony
platform. Finally, the section five finishes with the conclusions.

1.1 Motivating Examples
An effective unexpected exception must always be brought from
real life with proper documentation about the adopted strategies.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’07, March 11-15, 2007, Seoul, Korea.
Copyright 2007 ACM 1-59593-480-4/07/0003…$5.00.

Pedro Antunes
Mourão, H. and P. Antunes (2007) Supporting Effective Unexpected Exceptions Handling in Workflow Management Systems. Proceedings of the 22nd Annual ACM Symposium on Applied Computing, Special Track on Organizational Engineering, Seoul, Korea. ACM Press, pp. 1242-1249.

Pedro Antunes

Pedro Antunes

Considering this limitation, we use two motivating examples to
illustrate our solution: 1) a media report on the 9/11 catastrophic
event, as experienced by the USA’s air traffic control center; and
2) a non-catastrophic but also unexpected event, where a WfMS
must handle for the first time a client that went bankrupt. While
this second situation is much less inspiring that the first one, it
was indeed experienced by us during the implementation of a
space rental management system for a Port Authority.

We fundamentally selected the 9/11 event because very rich
information about the adopted exception handling procedures is
available to the public [22]*. The overwhelming impact in society
and strong political implications of this unique event were not
within the selection criteria and are out of the scope of this
research. On the other hand, as discussed in the previous section,
an effective unexpected exception is an event for which the
organization has no prior knowledge about the resolution.
Therefore, this is a good example to motivate the discussion on
how WfMS users react to this type of situations.

Considering regular air traffic control, every plane is a process
instance and every route is modeled since the plain first checks in
the air traffic control on the departing airport and until it checks
out on the arriving airport. For instance, AA flight 11 route on
9/11 started at Boston and its model considered driving it to Los
Angeles. At approximately 8:15 AM on that day, the air traffic
control center in Boston stopped receiving feedback from the
airplane pilots and lost the transponder signal. Controllers also
reported hearing a man with a strange accent in the cockpit. This
combination of events originated an exception. Along with the
description of our exception handling solution, facts from this real
event will be used to exemplify how the proposed solution could
be used to support exception handling.

One of the key decisions taken during this exceptional situation
was to land every plane that was flying in the USA and Canada air
spaces. According to FAA officials, they “[…] decided not to
write a new set of procedures for clearing the skies. They started
to but scrapped the idea. They concluded that the FAA was better
off relying on the judgment of its controllers and managers.” From
our perspective, this means that under such extreme conditions
procedural control was considered worse than giving people
access to the relevant updated information and letting them decide
the best reactions to the concrete situation, i.e., map guidance was
clearly favored against model guidance.

It is also important to notice that air traffic controllers tried to do
whatever they could to overcome the situation. They used any
available means to fulfill their goals and established their goals on
the fly as they were collecting information about the situation.
Furthermore and most important, the plan to overcome the
situation was not defined for every control center. According to
the available airports and number of planes they had to land,
controllers implemented different local strategies. This situation
highlights the completeness requirement stated in section 1.

* the report was issued by USA Today based on interviews to

more than 100 people involved in key decisions and data
collected from other sources, such as FAA radar, air traffic
control databases, and a special software to analyze plane
rerouting.

Finally, we emphasize that although model guidance could not be
adopted, map guidance was apparently considered beneficial: the
FAA command center, after the second plane crashed, decided to
writing on a white board information regarding all planes
suspected to be hijacked. This situation also stresses the role of
monitoring information and external tools in map guidance.

Another important implication to our research can be drawn out
from this quote from USA Today: “landing nearly 4,500 planes
was a massive undertaking and a historic achievement. It required
intense cooperation, swift decision-making and the unflinching
work of thousands of people. Across the nation, controllers
searched for alternate airports to land large jets.” The mentions to
intensive cooperation and swift decision making are crucial to our
exception handling approach.

The second example was chosen because it is related with a
WfMS that we developed for a Port Authority and a real
exceptional event that we had the opportunity to follow. Several
data related with this event was collected and the system users
were interviewed to identify the adopted handling procedures and
their relationships with the WfMS. This second example is used in
the paper to discuss the feasibility of our framework.

The businesses processes modeled refer to the activity that
manages space rentals within the Port Authority jurisdiction. They
are administrative processes and involve 10 persons within the
organization. Every month the system must generate invoices for
every occupied space and follow up payment. A list of debts and
free/occupied zones must be generated at any moment. Client
related information is also managed by the system.

2. RELATED WORK AND SCOPE OF THE
FRAMEWORK
Various approaches to increase WfMS flexibility during runtime
can be found in the literature: 1) special modeling constructs to
deal with unexpected exceptions [2,6]; 2) apply model changes to
running instances [3,11,24,30]; and 3) using interactive enactment
or constraint based workflow [8,13,16]. We identify two parallel
research streams [14]: metamodel and open point. Metamodel
approaches take into specify, implicit or explicitly, metamodelling
constructs to deal with flexibility assuring system correctness,
while open-point approaches rely on the users to assure that no
inconsistencies are inserted in the system.

Metamodel approaches to deal with expected exceptions rely on
special modeling constructs that are invoked whenever a
predefined exceptional situation is detected [2,5,6,9]. Several
techniques, such as exception mining [5,15], case base reasoning
[17,31], and knowledge bases [7] have been proposed to expand
the system flexibility handling exceptions. If we consider a
continuum from expected to unexpected exceptions, all these
systems handle events falling close to the expected limit.

Chiu developed a system to handle expected and unexpected
exceptions [5]. The user interface to handle unexpected
exceptions allows one user to choose a complete new path.
However in our proposed system collaboration among different
users and map guidance is a critical issue in effective unexpected
exception handling.

Regarding the metamodel approaches and unexpected exceptions,
we find several solutions based on dynamic changes and ad hoc

interventions offering correctness criteria to keep system
consistency [3,11,24,30].

Regarding the open point approaches in more detail, we find
interactive enactment [16], flexible enactment [13], and constraint
base modeling [8]. These approaches use incompletely specified
models, allowing users to interactively adapt them, e.g., inserting
tasks. This increases the users’ freedom to cope with deviations
between the work models and the real world, although in a more
structured way than a totally open-point intervention would
afford. In any case, users will be able to insert unidentified
inconsistencies, and possibly put the WfMS at risk [14],
considering that no dynamic or structural checks are made.

Like Agostini and De Michelis [1], we agree with both research
streams delineated above and posit that a WfMS should offer both
advantages: being able to work under model guidance and adopt
an open point behavior when model guidance is not applicable.
However, after open point operations, the system should support
users bringing instances back to model control, while identifying
potential flow and data inconsistencies. A complete discussion of
the mechanisms necessary to bring the system under model
control is out of the scope of the present paper.

In summary, our main focus is on exceptions that can not be
handled in an automatic way, i.e., can not be dealt by any of the
solutions enlarging the original notion of expected exceptions
(thus moving close to the unexpected limit). We assume that users
should be able to flexibly move the system behavior from totally
defined to unstructured processes, where open point operations
are carried out while metamodel assumptions are used to check
system coherence. This enables the adoption of the best strategy
to the exceptional situation and facilitates the identification of
user-inserted inconsistencies. Finally, the system should also
support the user identifying the necessary actions to bring the
system back to a coherent state.

3. SUPPORTING UNSTRUCTURED
ACTIVITIES
We propose a framework supporting the unstructured activities
necessary to resolve effective unexpected exceptions. In this
section, we start by describing how the framework governs the
system changes from model control to human-controlled
unstructured activities and then back to model control. The
framework enables the system to support the whole spectrum of
organizational processes mentioned in section 1. In section 3.1.
we introduce the four functions of an exception handling process:
detection, diagnosis, recovery, and monitoring. We analyze the
main activities carried out on each one of these four functions and
their inter-relations as the handling procedure evolves. Section
3.2. analyzes the diagnosis and handling strategies.

On the occurrence of a basic failure, application failure or
expected exception we will assume that modeling assumptions
and runtime features of the WfMS handle the situation and the
system is kept under model control.

On the contrary, when an unexpected exception is detected, the
system supports unstructured activities carried outside the
consistency boundaries, i.e. the system is beyond model control.
When the exception handling is accomplished, the users may
decide whether the process instance should be placed under model

control, continue outside model control, or be aborted. If model
control is the choice, the system will then analyze model
inconsistencies, and either redeem model control or notify the
users about existing conflicts and continue supporting
unstructured activities. The model consistency analysis is
accomplished instance by instance.

On the 9/11 motivating example, after the order to land all planes
was issued, the Memphis controllers scrapped normal air traffic
procedures and decided that every controller should follow their
assigned planes until landing. Usually the planes are transferred
from a proximity operator to an airport operator when they get
close to the airport. But since the number of planes to land was
very high, they decided to eliminate these transfers, reducing the
synchronization and information overloads. Suddenly, the air
traffic controllers started working under a completely new
choreography. As reported, all over the country the controllers
had to find out the best solution to overcome the problems they
faced in their areas. During this period, the air traffic control
system in the US was operating with unstructured activities.

When the situation finally got under control, i.e., officials were
convinced that no hijacked planes were in the air, they smoothly
started rescheduling and allowing commercial airplanes to take off
to their destinations. The system therefore was step by step being
lead to model control.

3.1 Exception handling functions
We distinguish four functions in exception handling: 1) exception
detection; 2) situation diagnosis; 3) exception recovery; and 4)
monitoring actions.

The majority of authors identify the first three [7,26]. However, as
we already mentioned before and explain in detail below, we
believe that monitoring actions play a key role in effective
unexpected exception handling.

Exception detection has been extensively studied in previous
works [2,5,6,19,26]. Detection can be manual or automatic. A
detailed description of the automatic detection techniques is out of
the scope of this paper, since we are focused on the user’s
perspective. We assume that an exception detection component
must be tightly integrated with the workflow engine. In section
4.2, we discuss the integration of the detection component with
the other exception handling functions.

We will rather focus on the other three functions. In our
framework, we advocate an intertwined play between diagnosis,
recovery and monitoring until the exception is resolved [18]. That
is to say, the diagnosis is not considered to be complete on the
first approach but rather through an iterative process where
different actors may collaboratively contribute to the solution. We
should also stress that both the exceptional situation and
perception of the situation may change along this iterative
process, as new information is made available and being
processed by humans. As an example, the already mentioned
white board displaying information about the planes suspected to
be hijacked was very important to manage the situation and decide
the next steps.

These activities, categorized in the framework as monitoring
actions, are necessary to control the progress of the whole
exception handling process. They allow users to collect up-to-date
information about the exception. Considering again the open

nature of the framework, these monitoring actions may also bring
environmental information to the system.

After diagnosis, users may carry out recovery actions. The open
nature of the framework indicates that the recovery actions do not
always run in the inner system context, and thus some linking
mechanism is also necessary to bring environmental information
to the system. This issue will be addressed later in more detail.

3.2 Diagnosis and handling strategies
A good common understanding of the exceptional situation is
crucial to take the right decisions. Providing involved actors with
action contexts [33] supports knowledge production and
consumption, augmenting the quality of the decision making
process. In this section we start by discussing the several
dimensions necessary to diagnose the exceptional situation
(parameters of the context), and then we proceed with the
handling strategies.

3.2.1 Diagnosis
The diagnosis is mostly dependent on a detailed assessment of the
exceptional event. Using previous classifications [4,25] and some
new added characteristics, we classify exceptional situations using
the orthogonal dimensions:

(i) Scope – process specific when only a set of instances is
affected; or cross specific when various sets are affected. At
least one instance must always be associated;

(ii) Detection – automatic or manually detected exceptions;

(iii) Event type – data events related to violation of data rules;
temporal events when a predefined timestamp occurs;
workflow events identify special situations at the beginning
or ending of tasks or processes. The assessment of the event
type is mandatory, because it impacts the handling phase;

(iv) Organizational impact – employee, when only a limited
number of employees in the same department are affected;
group, when more than one department is affected; and
organizational, when the overall organization is affected. A
responsible must always be associated to the exception;

(v) Difference to the organizational rules – established
exceptions occur when rules exist in the organization to
handle the event but the right ones cannot be found;
otherwise exceptions occur when the organization has rules
to handle the normal event but they do not apply completely
to the particular case; and true exceptions occur when the
organization has no rules to handle the event;

(vi) Complexity of the solution – easy, when the optimal
solution can be easily obtained in an acceptable time; hard,
when the optimal solution is not obtainable within an
acceptable time. The solution is related to the semantics
associated with the event and not with the handling
procedure;

(vii) Reaction time – quick, when the reaction to the exception
must be as fast as possible; relaxed, when the reaction time
is not too critical but some decisions must be taken within a
time frame imposed by the instance(s); long, when the
reaction time is not critical. This information is mandatory;

(viii) Time frame to achieve solution – quick, when the situation
is expected to be resolved in few working units; relaxed,
when the time frame is more relaxed, although being a

parameter to be taken into consideration; and long when
time is not a critical issue.

Only the scope, organizational impact, event type, and reaction
time dimensions must be set by the detection process. The other
dimensions may by set or not by the users, according to their
perceptions of the situation. These dimensions may be redefined
by users whenever more information is collected, and the old
values are always preserved in a chronological record.

Bringing back to the discussion our 9/11 motivating example, and
considering the first exceptional event, the detection was manual
and occurred when the controller realized that a plane stopped
answering calls and the transponder signal disappeared from the
radar. This “process-specific” situation affected only one instance.
The time frame to achieve solution was “relaxed”, since the
controller had to follow the event realizing if it was a serious
trouble or a temporary malfunction. Some other diagnosis
information would include: it was a workflow event type; the
organizational impact affected only “one employee” and the
difference to the organizational rules was an “expected
exception”, where the controller knows the right procedure to
apply. All other dimensions are undefined.

When the controller heard a strange accent in the cockpit saying
“we have some planes, just stay quiet and you will be OK,” the
situation changed and the exceptional event was propagated to the
control center in Herndon. This becomes a situation to be
followed by the central office with high priority: the
organizational impact changes to include the national operations
manager and the time frame to achieve solution is maintained in
“relax” mode, because hijacked planes usually follow some course
to an airport and thus do not demand fast recovery.

When the second hijacked plane hit the south tower, the diagnosis
changed again. The time frame to achieve solution had to change
to “quick”, the organizational impact now affected the whole air
traffic control organization, the complexity of the solution
changed to “high” and the difference to organizational rules
corresponded to a “true exception.” As a consequence of the new
diagnostic, the national operations manager started wondering
how many and what planes were in the hands of the hijackers and
collecting more information, e.g. to identify the affected instances.

3.2.2 Exception handling strategies
We identify the following dimensions to classify exception
handling strategies:

(i) Recovery actions – further division presented below;

(ii) Communication type – synchronous or asynchronous. This
dimension classifies the way people exchange information;

(iii) Collaboration level – one person solves the situation;
several persons solve the situation in a coordinated mode;
or several persons solve the situation in a collaborative
mode. It should be emphasized that this dimension is
focused on implementing recovery actions;

(iv) External monitoring – there is either enough information
to achieve the best solution or additional information must
be collected from the environment;

(v) Tools to determine the best solution – either no external
decision aids are required, or there is a need of advanced
support to achieve the best solution.

This information is associated to every exception raised in the
system. We emphasize that, likewise diagnosis, this information
may change over time as more data about the exception is
obtained. A chronological record of the selected values is kept in
the system to be consulted by the involved users. The recovery
actions can be [5,10,23,26]: abort, decrease completion time,
recover from a system failure, recover from a task failure, jump
forward, repeat a task, jump backwards, delay this task, and react
to environmental changes.

This classification affords linking the high-level handling
strategies with a specific set of tasks available at the system level.
The communication type expresses how the collaboration support
component will interconnect the persons involved in the
exception handling process. We differentiate two types of
communication: synchronous and asynchronous. In synchronous
communication all of the persons involved intervene at the same
time, while in asynchronous communication the persons involved
are not engaged in the process at the same time.

Concerning the collaboration level, one has to be aware of
concurrent ad hoc changes made to process instances. There are
two different situations to be considered: 1) if the interventions
are on disjoint zones of the workflow model no special care is
needed and users can implement recovery actions in a
collaborative mode; 2) if they are working on overlapping zones
of the model they must have a tight synchronization and clear
understanding of the interferences each one has on the other and
they should implement the actions in a coordinated mode [24].

The external monitoring dimension specifies if environmental
information is necessary to resolve the exception. In our
framework we suggest that not only diagnosis but recovery as well
may require referencing external information.

The item tools to determine the best solution identifies any
additional tools necessary to implement the best recovery
solution. This affords linking the framework with external tools
supporting the decision processes.

4. IMPLEMENTATION
In this section we describe the framework implementation. We
start with some relevant details about the system platform. Then,
we identify the exception handling components and we finish
illustrating system usage on the Port Authority example.

4.1 System platform
The adopted WfMS is the OSWorkflow offered by the Open
Symphony (OS) open source platform [21]. The OS platform
provides very basic workflow functionality, consisting of a
workflow engine (OSWorkflow) integrated with generic Web
Services support. The workflow clients are built upon the Model
View Controller (MVC) architecture.

Furthermore, we rely on the Java SMS project to send mobile
messages supporting asynchronous communication. Finally, we
also integrate Wildfire Instant Messenger (IM) client. This
component supports exception handling strategies involving the
collaboration between users.

4.2 Exception handling components
In Figure 1 we identify the exception handling components and
interfaces with the OS components. Four exception handling

components and two interfaces are identified. The components
are: exception description, WF interventions, exception history
and collaboration support.

Figure1. Exception handling components and interfaces

The exception description component supports the diagnosis
process described in section 3.2.1. The WF interventions
component implements the workflow interventions described in
section 3.2.2. The collaboration support component implements
the communication type and collaboration level mechanisms also
described in section 3.2.2. Finally, the exception history
component stores all relevant information associated to the
exception handling cycles.

Concerning interfaces, the interface 1 links the exception handling
components with the OSWorkflow, while interface 2 links these
components with the external environment. Interface 1 is used to
collect information about the OSWorkflow status, to implement
low level recovery actions (launch/suspend tasks, etc), and to
automatically detect and signal exceptions.

The interface 2 supports referencing environmental information
gathering about the operations carried outside the framework’s
scope. We differentiate two types of activities carried out in the
external context: 1) situation awareness, collaboration and
decision making; and 2) recovery actions. The former are related
with external communication, coordination, collaboration and
decision making tools (e.g., meetings, telephone conversations
and operations research techniques). The latter address any
external recovery actions necessary to resolve the exception. It is
our aim that, for any activity executed outside the framework’s
scope, some environmental information is inserted in the system
for monitoring purposes.

Dashed lines shown in Figure 1 represent information flows
whereas uninterrupted lines represent control flows. Automatic
exception detection is also represented in the figure, as it involves
the workflow engine. Automatic detection is implemented by a
specialized component that is highly dependent on the
OSWorkflow.

4.3 Detailed functionality of the exception
handling components
The functionality of the exception handling components is
orchestrated by a workflow model executed by the WF engine†.

† To make this more clear: we use a workflow model to

orchestrate exceptions raised by other workflow models.

The model, shown in Figure 2, and the orchestration of the
exception handling process is described in the current section.

Figure 2. Exception handling components and interfaces

The exception handling process is instantiated either by automatic
or manual detection. In both cases one person is always associated
to the exception and involved in the handling process. That
person is either the one that manually detected the exception or
someone involved in the workflow task that automatically
generated an exception.

From the users’ point of view, the handling process is managed
through a Web page, which we designate EHW. Before
proceeding with a detailed explanation of the EHW page, some
specific OSWorkflow terminology should be introduced. A
workflow state is named step in OS. A task in OS is an activity
carried out within a step that does not change the workflow state.
An action is always associated to a step transition. These
definitions are necessary to understand the links between the
model shown in Figure 2 and the EHW page displayed in Figures
3 and 5.

Figure 3. Exception handling workflow page (EHW)

The EHW page reports on the current status and manages the
exception handling workflow using the notion of step. In the
situation shown in Figure 3, only one step is active: “Edit
exception info.” If the “Edit exception info” task is executed, the
exception information can be edited but no workflow transition
will take place.

In Figure 4 we show the details of the “Edit exception info” task,
where the user defines the mandatory and optional diagnosis
values discussed in section 3.2.1. That person may also define a
new responsible and a list of affected users and workflow
instances. If a new responsible is assigned, that person is
contacted by the collaboration support component on the step
transition. This component uses SMS messaging if the time value
is quick and an email otherwise.

Figure 4. Editing the exception information

Considering again the EHW page, the “Start handling” action
initiates the five parallel branches of the exception workflow
model. Consequently, the EHW page will look like Figure 5.
Observe that several steps are now available, allowing to
collaborate with other persons involved, modify the exception
description, execute recovery actions, execute monitoring actions
or manage external information.

Figure 5. EHW page handling the 5 parallel branches of the
exception handling workflow

The “Collaboration support” step offers one task and two actions.
The collaborate task can be synchronous or asynchronous, and at
any time the users may choose which type to use. When

asynchronous collaboration is selected, the system supports
sending email messages between the several persons handling the
exceptional event. The generated email messages mixes
information provided by the sender with information
automatically generated by the collaboration component, which
includes at least a link to the EHW page. Concerning the
synchronous collaboration, the collaboration component supports
IM between the several persons handling the exceptional event
and interfaces with the exception history component to preserve
the exchanged messages in context.

The “Define new responsible” action allows modifying the person
responsible for the exception handling. This action is
implemented by a Web page where the user may choose a new
responsible by selecting a person from a combo box.

The “Change affected users” action enables the selection of
affected users, and is implemented by a Web page similar to the
previous one where multiple users can be selected.

Concerning the “Edit exception classification” action in step
“Exception description”, the Web page utilized to edit the
exception classification is similar to the “Edit exception info”
page shown in Figure 4 and is not shown. Another functionality is
that the user may share alert messages with attached files with the
other persons involved. These alert messages may be classified as
critical (displayed in red) or important (displayed in blue). Figure
6 illustrates how the alert messages are displayed in the EHW
page. If none of these classifications is selected the message is
only displayed inside the component. Another web page enables
changing the workflow affected instances.

Figure 6. EHW displaying alert messages at the top

Concerning the “Recovery actions” step, the user must first select,
among the affected instances, which ones to apply a recovery
action. Then, one recovery action may be selected from the list
discussed in section 3.2.2. The implementation of these recovery
actions requires low-level interventions in the OSWorkflow that
will not be described in detail here.

Regarding “Monitoring actions,” this step allows users storing
relevant external information in the exception history. The user
may select among the following information types: application
data; workflow relevant data; workflow control data; links to Web
resources; and text provided by users. Application data, workflow
relevant data, and workflow control data follow the terminology
defined by the WFMC [32].

If application data resides on an accessible database, a reference
can be inserted in the OSWorkflow configuration file to allow
accessing the database. The monitoring action Web page then
accesses the database metadata and displays the available tables
and fields, so that the user may associate the monitoring action
with a database field.

Finally, the “External info” step affords recording into the
exception history any external information provided by users.

4.4 Example usage
We will rely on the previously mentioned Port Authority example
to illustrate the feasibility of our solution. Assume that Henry is
updating the client’s information when he is informed that the
client has bankrupted. On the Web page to edit client related
information there is a link to manually signal a new exception.
After selecting this link, the user is prompted with the EHW page
shown in Figure 3. From there, the exception classification must
be accomplished, as shown in Figure 4. Henry realizes that time is
not critical and classifies it as relaxed. He also affects John, his
supervisor, to the exception handling process. He does not define
John as responsible because he wants to talk with him first. He
inserts a brief exception description and classifies the exception as
an external event with departmental impact. He also defines the
exception as a true exception, since it never happened before. The
dimensions scope, affected instances, and responsible are
automatically defined by the system.

By following the link shown in Figure 3, Henry starts handling
the exception. An email is generated to John with the exception
handling information inserted by Henry and a link to the EHW.

John may then look at the situation in the EHW page and start a
collaboration task with Henry. He decides using IM. During the
conversation, John realizes that the space occupied by the
company is being requested by another company. He also
recognizes that the client’s debt is 50.000. John tells Henry to
insert this alert in the EHW and then involves Philip, from the
lawyer department, in the exception handling process. John also
decides to insert a monitoring task to identify whether the client
has any other debts.

Philip is informed about the situation by email. After reading the
email message, he decides to phone Henry to discuss the details.
During the conversation, they decide that Philip will consult an
external expert. Philip inserts a comment about this decision in
the external information. Henry will wait for any news.

Philip finds out from the expert that the Port Authority should
notify the client by standard mail, giving 5 days to pay the debt.
Obtaining no response, they should start a lawsuit action. Philip
writes a letter draft and attaches it to the workflow as an entry
message in the “edit exception classification” action. He then uses
the “collaboration support” step with Henry and John to decide on
who will send the letter and who will follow this external action.
The email mechanism is adopted for that purpose.

Henry will be in charge of this external recovery action. John will
also monitor the evolution of the case in order to decide or not to
release the space to another client. If Henry finds out the company
pays the older debts they have to reanalyze the situation. Again,
Philip and John are notified about the new events. They realize
the older debt does not allow them to start a law suit; however
they decide that John should continuing monitoring this client. If
the client pays all his old debts they close the exception handling
process.

5. Conclusions
Our analysis on the support of effective unexpected exceptions
highlighted a fundamental system requirement: maintain task
execution under model guidance during normal operation and
change to map guidance when an unexpected exception occurs,

supporting users giving the control back to model guidance after
the exceptional situation is overcome. Under these circumstances,
collaborative user involvement is also crucial to determine the
most appropriate action.

We developed an exception handling process and a set of
components to support this functionality, orchestrating the
collaborative diagnosis, recovery and monitoring tasks. The
diagnosis task is based on a new classification of unexpected
exceptions proposed in this paper. Several dimensions
characterizing the handling strategies and relationships with the
classification of unexpected exceptions are proposed as well.

The major concepts underlying this framework were discussed in
the context of two motivating examples. Currently, the several
architectural components necessary to implement the framework
have been developed, in particular related with interface 1
(interface with the WfMS), including the interventions toolbox
and the exception description component. These components were
developed in the context of the Open Symphony platform [21].

6. REFERENCES
[1] Agostini, A. and De Michelis, G., A light workflow

management system using simple process models, Computer
Supported Cooperative Work, 9, 3 (2000), 335-363.

[2] Casati, F., Models, Semantics, and Formal Methods for the
Design of Workflows and their Exceptions. PhD Thesis,
Politecnico di Milano, 1998.

[3] Casati, F., Ceri, S., Pernici, B., and Pozzi, G., Workflow
Evolution, Data and K. Engineering, 24, 3 (1996), 211-238.

[4] Casati, F. and Pozzi, G., Modelling exceptional behaviors in
commercial workflow management systems, in, CoopIS '99,
(Edinburgh, UK, 1999), IEEE International,127-138.

[5] Chiu, D. K., Li, Q., and Karlapalem, K., WEB Interface-
Driven Cooperative Exception Handling in ADOME
Workflow Management System, IS, 26, 2 (2001), 93-120.

[6] Dayal, U., Hsu, M., and Ladin, R., Organizing Long-
Running Activities with Triggers and Transactions, in
SIGMOD'90, (Atlantic City, NJ, USA, 1990).

[7] Dellarocas, C. and Klein, M., A Knowledge-based approach
for handling exceptions in business processes, in WITS'98.

[8] Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., and
Zbyslaw, A., Freeflow: mediating between representation
and action in workflow systems, CSCW, (1996), ACM Press.

[9] Eder, J. and Liebhart, W., The Workflow Activity Model
WAMO, in CoopIS95, (Austria, 1995).

[10] Eder, J. and Liebhart, W., Workflow Recovery, in 1st IFCIS
CoopIS'96, (Brussels, Belgium, 1996), IEEE,124 - 134.

[11] Ellis, C., Keddara, K., and Rozenberg, G., Dynamic change
within workflow systems, in Proc. of conf. on
Organizational computing systems, (USA, 1995), 10-21.

[12] Ellis, C. and Nutt, G. J., Modeling and enactment of
workflow systems, in Application and Theory of Petri Nets,
(Chicago, Illinois, USA, 1993), Springer-Verlag,1-16.

[13] Faustmann, G., Configuration for Adaptation - A Human-
centered Approach to Flexible Workflow Enactment, Comp.
Supported Cooperative Work, 9, 3 (2000), 413-434.

[14] Han, Y., Sheth, A. P., and Bussler, C., A Taxonomy of
Adaptive Workflow Management, in CSCW - Workshop -
Towards Adaptive Workflow Systems, (USA, 1998), ACM.

[15] Hwang, S. Y., Ho, S. F., and Tang, J., Mining Exception
Instances to Facilitate Workflow Exception Handling, in 6th
Int. Conf. on DASFAA, (Hsinchu, Taiwan, 1999).

[16] Jorgensen, H. D., Interaction as Framework for Flexible
Workflow Modelling, in Group '01, (USA, 2001), ACM.

[17] Luo, Z., Knowledge sharing, Coordinated Exception
Handling, and Intelligent Problem Solving for Cross-
Organizational Business Processes. PhD Thesis, Univ. of
Georgia, 2001.

[18] Mintzberg, H., Estrutura e Dinâmica das Organizações.
Publicações Dom Quixote, 1999.

[19] Mourão, H. R. and Antunes, P., Exception Handling
Through a Workflow, CoopIS’04, (2004), Springer,37-54.

[20] Mourão, H. and Antunes, P., A Collaborative Framework for
Unexpected Exception Handling., in CRIWG’05, (Brazil,
2005), Springer-Verlag,168-183.

[21] The OpenSymphony project. (2005, 1/11/05)
<Http://www.opensymphony.com>

[22] Part I. Terror attacks brought drastic decision: Clear the
skies. (2005) <Http://www.usatoday.com/news/sept11/2002-
08-12-clearskies_x.htm>

[23] Reichert, M., Dadam, P., and Bauer, T., Dealing with
Forward and Backward Jumps in Workflow Management
Systems, Software and Systems Modeling, 2, 1, 2003, 37-58.

[24] Rinderle, S., Schema Evolution in Process Management
Systems. PhD Thesis, University of Ulm, 2004.

[25] Saastamoinen, H., On the Handling of Exceptions in
Information Systems. PhD Thesis, Un. of Jyväskylä, 1995.

[26] Sadiq, S. W., On Capturing Exceptions in Workflow Process
Models, in Proceedings of the 4thBIS, (Poland, 2000).

[27] Schmidt, K., Of maps and scripts, in GROUP '97, (USA,
1997), ACM Press,138-147.

[28] Sheth, A. P., Georgakopoulos, D., Joosten, S. M.,
Rusinkiewicz, M., Scacchi, W., Wileden, J., and Wolf, A. L.,
Report from the NSF workshop on workflow and process
automation in information systems, ACM SIGMOD Record,
25, 4 (1996), 55-67.

[29] Suchman, L., Plans and Situated Actions. MIT Press, 1987.

[30] van der Aalst, W. and Basten, T., Inheritance of workflows:
an approach to tackling problems related to change,
Theoretical Computer Science, 270, 1 (2002), 125-203.

[31] Weber, B., Wild, W., and Breu, R., CBRFlow: Enabling
Adaptive Workflow Management through Conversational
Case-Based Reasoning, ECCBR'04, (Madrid, Spain, 2004).

[32] Workflow Management Coalition - Terminology & Glossary
TC00-1011. WFMC, 1999.

[33] Zacarias, M., Caetano, A., Pinto, S., and Tribolet, J.
Modeling Contexts for Business Process Oriented
Knowledge Support., In. Knowledge Management for
Distributed Agile Processes, Springer-Verlag, 2005.

