
 1

A Flexible, Lightweight Middleware Supporting the Development of
Distributed Applications across Platforms

Nelson Baloian2, Gustavo Zurita1, Pedro Antunez3 , Felipe Baytelman1

Universidad de Chile, Santiago, Chile, 1Information Systems Department - Business School,
 2 Department of Computer Science.

gnzurita@facea.uchile.cl;nbaloian@dcc.uchile.cl;bayltex@gmail.com
3Department of Informatics of the Faculty of Sciences of the University of Lisboa,

Bloco C6, Campo Grande, 1700 Lisboa, Portugal, paa@di.fc.ul.pt

Abstract

Middleware supporting the development of
distributed systems has been produced since the
beginnings of the Internet. With the emergence of
mobile computing new requirements for this kind of
middleware arise since the scenario for mobile
computing is very different from the desktop computing
one. Nowadays, because increasing ubiquitous
computing, new scenarios in which desktop computing
application should communicate with mobile
application are becoming more and more frequent. In
this paper we present a platform which apart of being
lightweight and easy to use has also the advantage that
it enables the communication of software objects
between the most used two platforms for mobile devices:
JME using the Java language and .Net using C#.

Keywords: Techniques, methods and tools for CSCW in
design, Middleware, Mobile.

1. Introduction

Since the early days of distributed, collaborative

applications development many authors recognized the
need for middleware in order to ease the programming of
this kind of software. Sun’s RPC (Remote Procedure
Call) [11] schema and the CORBA [12] architecture are
among the first and most known platforms. Many other
followed, each one fulfilling different requirements [1].
They differ with regard to the distribution schemes of the
shared data, communication mechanisms, and application
architecture they support [2]. Rendezvous [13] and Suite
[14] are groupware platforms, which use a central
distribution scheme for the data of collaborative
applications. MatchMaker [16] uses a replicated
distribution scheme. DSC [5] is a p2p groupware system
with decentralized topology for supporting synchronous
collaborations based on JXTA.

The last years have witnessed an explosion of new
collaborative systems for mobile devices that incorporate
und utilize their communication capabilities to support
collaborative work in ways that were not conceived
before or were impossible to implement with desktop

computers. Applications allowing users to collaborate in
real time over wireless connected mobile devices
building ad-hoc networks have attracted the attention of
many authors. Some scenarios for which these
applications have been developed are:

• Rescue efforts can be more easily coordinated in

emergency situations and disaster areas where a
wired infrastructure is not available

• People attending a meeting can share ideas and data
by means of their mobile devices [18].

• Field survey operations in remote areas with no fixed
infrastructure can be easily facilitated.

• A team of construction workers or garden designers
on a site without a network infrastructure can share
blueprints and schematics [8].

• Educational activities involving students and
teachers in collaborative room environments [9].

 All these scenarios share common requirements, like
high mobility, dynamic user group configuration, easy
input procedures, data sharing, etc. However, the use of
mobile devices which can provide the needed computing
support for the development of these scenarios changed
the rules for developing distributes applications since
mobile devices have still some problems which are not
present on desktop computers. Some of them are
described by [10] and [7] and are:

• Low-bandwidth and high latency - Network

connectivity of mobile devices depends on radio
frequency technologies to exchange data. As a result,
wireless networks generally exhibit low bandwidth,
latency, and high packet loss rate [3].

• Low processor power - Processor power becomes a
limited resource, as mobile devices are designed to
be portable and the weight and size of the system
must be kept to a minimum.

• Small display size – Most of the mobile devices are
equipped with small displays that are not suitable for
displaying large amount of information or
sophisticated user interface.

paa
Baloian, N., G. Zurita, P. Antunes and F. Baytelman (2007) A Flexible, Lightweight Middleware Supporting the Development of Distributed Applications across Platforms. The 11th International Conference on CSCW in Design, Melbourne, Australia.

 2

• Short battery life - The power necessary for
operation, virtually limitless in a stationary device, is
a scarce resource for most mobile devices.

• Limited input methods - The possible methods of
data input currently available on the market include
keyboard, pen-based, and voice. Some devices
support varying combination of these methods to
give the user the most flexibility [11], although they
are still limited compared to their desktop
counterparts.

•
This new environment also imposes new restrictions

and requirements to the software which runs on them.
Novel collaborative paradigms need to be developed to
take into account the intermittent application, resource,
and user availability, the variability in device capabilities,
and the unreliable network connectivity. Accordingly,
new middleware supporting the development of
distributed communications was necessary and a good
number of them have been already developed.

Nowadays, ubiquitous computing is getting more and
more prominent and there are many situations which can
benefit of the interaction between mobile devices and
desktop computers. One example is people engaged in
brainstorming-like meeting activities, where they use
their handheld devices to input ideas which are collected
and displayed by an electronic board [4]. Another
interesting example is the use of combined technology
(mobile-desktop) in classroom learning activities [3].

Computer technology has made its way into
classrooms in a very sound way and it is not uncommon
now to see teachers using computers or electronic boards
to enhance their lecturing, and students using laptops or
other mobile devices to search data, receive and
manipulate multimedia-based learning material and work
collaboratively [6].

We have been engaged in developing software for
supporting in-class synchronous collaborative learning
since more than 10 years using a middleware which
facilitates the programming of distributed applications
called MatchMaker [16]. As mobile devices became an
interesting resource to support in-classroom learning we
tried to incorporate them by adapting the Java-based
systems originally developed for PCs to the new
environment. This originated lot of problems. First, it was
necessary to develop a lightweight version of
MatchMaker for the handhelds, since the original one
could not run on JME. Second, freehand writing and
sketching input was very uncomfortable because the Java
platform was too slow. The same software using pen-
based free handwriting and sketching as input
programmed in C# was much better to use, producing
more accurate writing and sketches. Third, since Java was
designed to be platform independent, some of the
hardware-dependent features of the handheld were not
possible to control from the program.

A first idea to solve this was to use an approach like
the one used by XMIDDLE [10], using the object
architecture as the only interface between different

environments. However this means that every application
should implement the conversions between the internal
language-dependent object representation and its XML
representation. Another solution called SOMU [19] uses
web services for exchanging data, but this solution is not
lightweight enough and is too slow when implemented
across platforms.
 The problem of having applications from different
worlds talking to each other is certainly becoming a
general one, so it is worth to develop a reusable solution.
Therefore we opted for developing a new middleware in
Java and C# which enables applications living in
different worlds share and synchronize data among them
in a very simple yet fast enough way. The next section
explains the principles used for designing the solution.
The following one describes the implementation and the
Middleware’s API. Since one of our main concerns was
the performance of the distributed systems, we made
some benchmarking measurements in order to test the
suitability of the solution. Then applications developed so
far are presented as a proof of concept. Finally we present
conclusions and future work concerning the middleware.

2. A trans-platform middleware: principles

As we said, the new hardware and scenarios used by

mobile computing imposes other requirements to the
communication architecture than those imposed by
desktop computing. The main characteristics of the
middleware for this new scenario which are different to
those developed earlier for desktop applications are:

Decentralized: In many mobile scenarios, the only
available network will be the mobile ad-hoc network
(MANET) provided by the networking capabilities of the
mobile devices. This means that the communication and
data architecture must follow a peer-to-peer schema
avoiding a central server keeping the “master” copy of
the data and/or the list of active users. A full centralized
schema would be too risky for the mobile scenario
because of the communication problems and the dynamic
nature of the groups. In [7] and [10] full peer-to-peer
middleware for supporting communications in mobile
devices are proposed. In [15] a mixed environment is
presented, where a non-mobile server can take a different
role. A decentralized peer-to-peer schema also adapts
itself better to the fact that connectivity between devices
is intermittent and the participants list is dynamic,
because there is no central server which could leave the
session because of a crash or an intermittent
communication signal.

Replicated architecture: In distributed software
architecture there is no central server keeping a “master”
copy of the shared data and the active users list.
Therefore, every application must replicate exactly the
data others have in order to share a common working
environment. This means mechanisms must be
implemented in order to synchronize the replicated data.

 3

State-based synchronization: There are mainly two
ways to synchronize the data in a replicated environment:
by event or by state. Synchronization by event means that
all applications start with exactly the same set of data
with the same values. During the working session, if one
data unit (for example an object) changes its status in one
application due to an event caused by the interaction with
the user, the application sends this event to all other
connected applications, so they can change the state of
their object copy accordingly. Synchronizing by state
means every time a data unit changes its value, the whole
object, and not the event, will be sent to the other
applications. If the objects in the application are big, the
state-based synchronization mechanism may cause more
network traffic than the event-based one. But in an
environment where events may not reach all active
application or new application instances can join the
session at any time, the state-based synchronization is the
only reliable choice.

XML-based data exchange: Many of the existing
middleware supporting distributed application
programming for mobile or desktop devices use standard
XML description for an object (like SOAP) in order to
transmit it to another application running on another
platform. Since different platforms use different internal
object representation schema this is the most convenient
way for transmitting an object across different platforms.
An XML representation of an object may not only
contain the names and values of the object variables but
also some meta-information describing it, like the class
name, which will be used by the other platform to
reconstruct the object. Since there are already some
“standards” defining the way how an object should be
represented by an XML description, we will use one of
them in our solution.

3. The architecture of the middleware

The middleware we developed consists of a set of classes

implementing an API the programmer can use in order to
write distributed applications easily. These classes are
available in Java and C# and implement the necessary
mechanisms for converting data objects from their internal
representations into an XML representation, transmit them
across platforms and convert the XML representation into
the corresponding internal one. They also provide and start
the necessary services for discovering partners in the ad-hoc
network and establish connections among the different
applications in order to synchronize shared data.

3.1 Discovering partners and establishing
connections

In order to have an application join the group of active
partners in the ad-hoc network it has to instantiate an object
of the Node class. The constructor of this node starts a

service which will send multicast messages at regular
intervals to the group in order to inform other participants of
the presence of a new one. It will also start consuming
multicast messages from other partners present in the ad-hoc
network. This allows the application to maintain a list of
active participants updated. Every time a multicast message
of a new participant is received, its ID and IP number are
stored in the list and a TCP/IP connection is established with
that application through which data will be shared. If a
certain amount of time has passed without receiving a
multicast message from a member of the list of active
participants, its entry is deleted and the connection to that
application closed. The Node class can be extended in order
to overwrite some methods. For example, there is
receiveObject method which is called every time the
application receives an object. The figure 1 shows the
structure of the communication node implemented by the
Node class. It has a module which manages threads for
sending and receiving multicast packages used to maintain
an active partners list. This list is used by another module
which is responsible for creating TCP/IP connections with
the active partners and destroying them for those partners
which left the group and transmit synchronization data.

Figure 1: the communication node

3.2 Sharing objects

The data sharing mechanism is based on a “shared
objects” principle. A shared object is an abstract class which
should be extended in order to create an object class whose
state will be transmitted to all active participants when the
object changes its state, this is when one or more variables
change their value. The programmer implements a shared
object by extending the SharedObject abstract class. Apart
from declaring the field variables and methods for this
object, it is often necessary to implement a method called
postProcess which will be called every time the object state
is updated by a remote application. This is a key mechanism
which allows the updating of the application's interface
when the data changes. Apart from creating a shared object
by extending the SharedObject class, programmers have to
register it with the communication node giving a name to
this object, in order to start receiving the updates from the
partners also having a shared object with the same name.

The synchronization of the shared objects is achieved by
transmitting a copy of it to all partners every time their state
is changed. For this, methods for sending and receiving

TCP/IP connections
manager

Multicast discovery
manager

 Active partners list

Communication Node

TCP/IP connections to other
applications for transmitting/
receiving objects

Multicast UDP traffic for
discovering and discarding
partners

 4

objects were designed and implemented. We made these
methods public to the API since many small yet powerful
applications could be implemented very easily based on
those methods without having to use the SharedObject.

Figure 2: Serializing and transmitting objects

As we said, in order to transmit an object across

platforms we need a common language to describe it in a
common way. This language will be XML and the
representation will be generated in a standard way common
to both platforms. In C# this representation can be generated
by the XMLSerializer library and in Java by the Castor
library, both being free and open source software. The fact
that the same object should exist in both platform restricts
the type of the variables an object can contain to those
common to both platforms. In our case there are numeric
data, characters, booleans, strings and arrays. Figure 2 shows
how the object is transformed into its XML description
transmitted and reconstructed between applications running
in a “C# world” and another in “Java World”. When the
application developed by the middleware’s user must update
the state of an object it is passed to the Node class. This uses
the corresponding serializer for producing the XML
representation and sends it to the communication node of the
other application. The receiving node uses its own de-
serializer for transforming the XML representation in the
corresponding internal one.

Table 1: Public methods of the middleware’s API

For sending/receiving objects
public Node(String
nodeID, String
multicastIP, int
multicastPort)

Creates a Node object which
starts the Multicast service for
discovering and the TCP/IP
server for transferring data.

public void
receiveObject(Obje
ct o)

Used by the communication
node in order to receive the
objects sent by the partners and
synchronize the state of the
shared objects.

public void
sendObject(String
partnerID, Object
obj)

Sends an object to a certain
partner. If partnerID is null the
object will be sent to all
partners in the network

public void
sendObject(String[
] usrIDList,
Object obj)

Sends an object to a list of users

public void
sendToGroup(String

Sends an object to all partners
registered in a specific group

groupName, Object
o)

Group management
public void
join(String
groupName)

Joins the application to a certain
group characterized by the
group’s name

public void
leave(String
groupName)

detaches the application from
the group specified

public void
remoteJoinGroup(St
ring groupName,
String partnerID)

invokes the join method in a
remote application, forcing that
application to join a group

public void
remoteLeaveGroup(S
tring groupName,
String partnerID)

invokes the leave method in a
remote application, forcing that
application to leave a group

Method for shared objects
public void
postProcess()

abstract method of
the SharedObjec
class. Invoked when
the object is updated

public void
addSObject(SharedO
bject so, String
name)

Registers a shard
object with the
communication node

3.3 Group management

The learning scenario in a Computer-integrated
Classroom was the situation that motivated us to for
developing this middleware because of the need to have
applications implemented and running in different
platforms to share data. In this scenario, we also
recognized the need to have the possibility of defining
subgroups of partners inside the whole group of active
participants. For example, the teacher may want to
propose a task which should be accomplished by small
groups which do interact among them, but she wants to
keep the possibility of looking what the different groups
are doing. For this we developed the necessary
mechanisms inside the middleware in order to have
applications join and leave certain groups. This
information is stored in the communication node and is
used when the copy of an updated object has to be
distributed among participants. Accordingly, we
developed the methods which will send objects only to
applications belonging to a certain group. An application
can join more than one group, so it can receive updates
coming from different groups. We also implemented
methods for remotely force an application to join and/or
leave a group. This was necessary because in many cases,
the teacher or the moderator of a group was supposed to
form smaller working groups. The teacher or moderator
can then join the various in order to “see” what was
happening on all of them.

Table 1 shows a description of the most important
methods implemented by the middleware. All they are
applied to the Communication Node of the application,
which is from the Node class or an extended one, except
from the last two which are applied to an object of a class
extended from the SharedObject class.

Communication
node

XMLSerializer Castor

Application

Communication
node

Application

C# World Java World

 5

4. Benchmarking

Because the performance of the platform was one of our

first motivations for the development of the middleware we
wanted to test if our solution was fest enough. By fast
enough we mean that the time it take an object to be
transferred from one application to another does not interrupt
the flow of the synchronous work. Of course, this is more or
less a subjective evaluation and depends on the application
which is being used. An application making intensive use ob
the object transfer mechanism may be more sensitive to
longer delays than another which sends objects at a slower
rate. In any case, it was important to see how long this
operation takes in order to analyze which is the permitted
delay between the sending of an object and its arrival at the
other end our middleware can still support. For this we
carried out an experiment in which we measured the round-
trip time required to send and object to another application
and receive it back. We tested this for objects of different
size and between different platforms. We started by sending
and receiving objects of 10 bytes up to 10000 bytes first
among two applications both running in a C# platform. Then
we repeated it for two applications both running in a Java
platform and finally we repeated it for two applications.
Because the results of these experiments depend on the
hardware being used, very standard mobile devices were
used in order to have representative results: DELL X50V
and DELL X51V. The figure 3 presents the results of these
experiments. As we expected, the time required for the
round-trip of objects between applications running in similar
platforms is much smaller and almost neglectable compared
to the time required for the same round-trip between
applications running over different platforms. A very
interesting and unexpected result was that for all cases, the
time is drastically reduced when the objects’ size nears the
1000 bytes number. The time remains almost the same for
bigger objects. This may be caused by the way the ad-hoc
network packs the data in an UDP packages and sends it to
the network. In any case, this result gives us a hint on how to
design applications in order to have the best response time:
objects being shared should contain as much information as
possible and in any case they should contain at least 1k
bytes.

Figure 3: Time required for a round-trip of objects.

5. Implemented applications

With the help of this middleware, we have already

implemented some applications for mobile and desktop
computers. Some of them make intensive use of the trans-
platform feature of the middleware and others were
implemented for being run on the same platform. The trans-
platform feature was mainly used when we wanted to
develop C# applications running on handheld devices
communicating with existing applications on desktop
computers developed for the Java platform.

MCsketcher: MCSketcher [8] is a system that enables
face-to-face collaborative design based on sketches
using handheld devices equipped for spontaneous
wireless peer-to-peer networking. It is especially
targeted for supporting preliminary, in-the-field work,
allowing designers to exchange ideas through sketches
on empty sheets or over a recently taken photograph of
the object being worked on, in a brainstorming-like
working style. Pen-based designed human-computer
interaction is the key to supporting collaborative work.
This application was entirely written in C# aimed for
being used only in a mobile situation.

Nomad: Nomad [18] is an Electronic Meeting Support
system for handhelds. The design principles applied for
developing the system are aimed to help reduce the
problems associated with having a small size screen to
interact with. The human-handheld interaction is based only
in gestures and freehand writing, avoiding the need of
widgets and virtual keyboards. The content of the generated
documents are organized as concept maps, which gives
more flexibility to reorganize and merge the contributions of
the meeting attendees. The system is based on handhelds
interconnected with an ad-hoc wireless network. This
application has a module which allows the use of an
electronic board in order to have a common display to show
the content being produced during the working session.
Coolmodes: Coolmodes [9] provides a uniform shared
workspace environment which allows for constructing and
running models with different formal representations (Petri
nets, System Dynamics, mathematical graphs etc.) and also
supports semi-formal argumentation graphs and hand-
written annotations. This software was developed for being
used on desktop computers over the Java platform with the
goal of being used collaboratively in a classroom. Several
students can share a running model by synchronizing their
simulation environments. Simulations are analyzed to
generate hypotheses about the global behavior of systems.
For this system a C# module was developed in order to
allow students interact with the software from mobile
devices instead of

6. Conclusions

According to the benchmarking results and to the

practical experience in using the middleware we can

 6

conclude that this is in fact an easy to use, flexible, and
lightweight middleware for developing distributed
applications across platforms. Programmers could fast and
easily design and program applications. The shared object
paradigm was perceived by them as a powerful yet easy to
learn and use paradigm.

As we saw from the benchmarking results, the solution is
fast enough to implement synchronous applications across
platforms for many cases. In all the applications so far
implemented with the middleware half a second-delay was
not critical for influencing the normal flow of the
applications. We are still working in order to make the object
transfer time between different platforms smaller, by making
the serializing/deserializing process more efficient.

Finally, we want to point out that any platform
implementing the API could then also communicate
with applications implementing these two platforms
using the shared object paradigm.

References
[1] T. Urnes and Nejabi, R: “Tools for implementing

groupware: Survey and evaluation”, Technical Report No.
CS-94-03, York University, 1994.

[2] Lukosch, S: “Adaptive and Transparent data Distribution
Support”, Proceedings of the CRIWG’02 conference,
September, La Serena, Chile, 1002, pp 255-274.

[3] U. Farooq, W. Schafer, M. Rosson, and J. Carroll: M-
Education: “Bridging the gap of mobile and desktop
computing”. WMTE'02, 2002, pp. 91-94.

[4] P. Siland, E. Sutinen. J. Tarhio: “Mobile Collaborative
Concept-Mapping Classroom Activity with Simultaneous
Field Exploration”, Procs WMTE'04, 2004, pp. 114-118.

[5] M. Jianhua, M. Shizuka, L. Jeneung, and H. Runhe: “A
P2P groupware system with decentralized topology for
supporting synchronous collaborations”, International
Conf. on Cyberworlds, Singapore, 3-5 December. 2003, pp.
54- 61.

[6] N. Baloian, H. Hoppe, M., Milrad, and M. Hoeksema:
“Technologies and educational activities for supporting
Challenge-based Learning”. WCC 2006, Santiago, Chile.

[7] D. Buzko, W. Lee, W., and A. Helal: “Decentralized ad-
hoc Groupware API and framework for mobile
Collaboration”, Procs of the GROUP’01 Conf. Boulder,
USA, 2002, pp. 5-14.

[8] G. Zurita, N. Baloian, F. Baytelman: “A face-to-face
system for supporting mobile collaborative design using
sketches and pen-based gestures”, Proceedings of the
CSCWD’06, Nanjing, China, 2006.

 [9] N. Pinkwart, U. Hoppe, M. Milrad,: “Educational
scenarios for cooperative use of Personal Digital
Assistants”. J. of Comp. Assisted Learning (2003), 19,
2003, pp. 383-391.

[10] C. Mascolo, L. Capra, S. Zachariadis: “XMIDDLE: A
data-sharing middleware for mobile computing. Wireless
Personal Communications”, 21, Kluwer, Netherlands,
2002, pp. 77-103.

[11] R. Srinivasan: “RPC:Remote Procedure Call Protocol
Specification” Version 2. Internet RFC 1831, 2002.

[12] A. Vogel and K. Duddy: “Java Programming with
CORBA”. John Wiley & Sons (USA) 1998

[13] R. Hill, T. Brinck, S. Rohall, J. Patterson, and W. Wilne,
W: “The Rendezvous architecture and language for

constructing multiuser applications”, ACM Transactions
on Computer-Human Interaction, 1(2), 1994, pp. 81-125.

[14] P. Dewan, and R. Choudhary: “A High-level and flexible
framework for implementing multi-user interfaces”, ACM
Transactions on Inf. Systems, 10(4), 1992, pp. 345-380.

 [15] R. Litu, and A. Zeitoun: “Infrastructure support for
mobile collaboration”, HICSS, 2004, Hawaii, USA.

[16] F. Tewissen, A. Lingnau, U. Hoppe, and N. Mannhaupt:
”Collaborative Writing in a Computer-integrated
Classroom for Early Learning”. European Conference on
CSCL, Maastricht, The Netherlands, 2001, pp. 593-600..

[17] C. Chang, J. Sheu, and T. Chan: “Concept and design of
ad hoc and mobile classrooms”, Journal of Assisted
Learning, 19, 2003, pp. 336-346.

 [18] G. Zurita, N. Baloian, F. Baytelman, M. Morales: “A
gestures and freehand writing interaction based Electronic
Meeting Support System with handhelds", COOPIS'06
Montpelier, France, November 2006), 2006, pp. 679-696.

[19] A. Neyem, S. Ochoa, J. Pino: “Supporting Mobile
Collaboration with Service-Oriented Mobile Units. Procs.
of CRIWG’2006, LNCS 4154, pp 228-245.

