
Analytic Evaluation of Groupware Design 

Pedro Antunes1,   Marcos R. S. Borges2 ,   Jose A. Pino3 ,   Luis Carriço1 

1Department of Informatics – Universidade de Lisboa, Portugal 
{paa,lmc}@di.fc.ul.pt 

2Graduate Program in Informatics – Federal University of Rio de Janeiro, Brazil 
mborges@nce.ufrj.br 

3Department of Computer Science – Universidad de Chile, Chile 
jpino@dcc.uchile.cl  

Abstract. We propose an analytic method to evaluate groupware design. The 
method was inspired by GOMS, a well-known approach to analyze usability 
problems with single-user interfaces. GOMS has not yet been amply applied to 
evaluate groupware because of several fundamental distinctions between the 
single-user and multi-user contexts. The approach described in this paper 
overcomes such differences. We also illustrate the application of the model by 
applying it to the design of a collaborative tool for software engineering 
requirements negotiation.  

1. Introduction 

Groupware systems are becoming increasingly popular, yet many groupware 
applications still have usability problems [1]. In groupware, the computer system aims 
at supporting human-human interaction affected by variables such as group dynamics, 
social culture, and organizational structure [2]. These variables, whose values are 
sometimes unpredictable, make groupware difficult to design, especially when 
compared to traditional software [3]. 

The usability issue has long been recognized as an important aspect in the design 
of computer systems. In groupware it can have a strong impact both on the overall 
efficiency and effectiveness of the team, and on the quality of the work they do [3]. 
The design of groupware systems should consider the various aspects that affect their 
usability, but there are few proven methods to guide a successful design.  

Many researchers believe that groupware can only be evaluated by studying 
collaborators in their real contexts, a process which tends to be expensive and time-
consuming [4]. Ethnographic approaches can be utilized to evaluate groupware, but 
these techniques require fully functional prototypes, which are expensive to develop. 
Also important is the overwork generated when usability problems are detected at this 
stage. Redesigning the groupware requires work that could have been avoided if the 
problem had been detected during the initial design.  We believe we can reduce these 
problems if we apply analytical methods to evaluate usability prior to the 
implementation.  

  

paa
Antunes, P., M. Borges, J. Pino and L. Carriço (2006) Analytic Evaluation of Groupware Design. Computer Supported Cooperative Work in Design 2: 9th International Conference, Cscwd 2005, Coventry, Uk, May 24-26, 2005, Revised Selected Papers. W.  Shen, K. Chao, Z. Lin, J. Barthès and A. James. Lecture Notes in Computer Science, vol. 3865, pp. 31-40. Heidelberg, Springer-Verlag. 



In this paper we propose an analytic method based on validated engineering 
models of human cognition and performance to evaluate the usability of groupware 
systems. The proposed analytical method has been derived from GOMS [5, 6]. 
GOMS (Goals, Operations, Methods and Selection Rules) [5] and its family of 
models, such as GOMSL [6], offer an engineering solution to the analysis of human-
computer interaction. GOMS has been successfully applied in several situations, to 
predict usability, to optimize user interaction, and to benchmark alternative user 
interfaces [7].  

GOMS addresses singleware, i.e. one user interacting with one device. Although it 
is possible to conceive and model multiple user interactions with one device using 
GOMS, we realized that such an approach is not beneficial for groupware designers, 
in particular if they are concerned with shared space functionality.  

GOMS is based on a cognitive architecture (user and physical interface) and a set 
of building blocks (goals, operators, methods and selections rules) describing human-
computer interaction at a low level of detail. We investigated which modifications 
would have to be made to the cognitive architecture and to the building blocks to 
apply the same ideas to groupware. This is explained in Section 2. In Section 3 we 
describe the proposed method, derived from the groupware cognitive architecture. In 
parallel with the method description, and to demonstrate its applicability, we apply it 
to the design of a groupware tool for software engineering requirements negotiation. 
Finally, Section 4 concludes the paper. 

2. GOMS and Groupware 

In general, the GOMS family of models has been associated with the Model Human 
Processor [5], which represents human information processing capabilities using 
perceptual, motor and cognitive processors. However, significant architectural 

differe
uses a
human

 
Fig. 1
Physical Interface

Output devices

User
Input devices

Cognitive 
processor 

Motor processors 

Perceptual 
processors 

Long-term 
memory

Conventional 
flow

Physical Interface

Output devices

User
Input devices

Cognitive 
processor 

Motor processors 

Perceptual 
processors 

Long-term 
memory

Conventional 
flow

. Singleware architecture 
nces are identified when considering individual models. For instance, KLM [8] 
 serial-stage architecture, while EPIC [9] addresses multimodal and parallel 
 activities. In spite of these differences, one characteristic common to the 



whole GOMS family of models is that it is singleware [10]: it assumes that one single 
user interacts with a physical interface comprising several input and output devices.  

Figure 1 depicts this singleware architecture based on EPIC. According to some 
authors [11], this architecture applies to groupware in a very transparent way: in order 
to model a team of users, one can have several models, each one addressing the 
interaction between one user and the physical interface; and assume that (1) the 
physical interface is shared by multiple users and (2) the users will deploy procedures 
and strategies to communicate and coordinate their individual actions. Thus, 
groupware usage will be reflected in conventional flows of information, spanning 
several users, which still may be described using the conventional production rules 
and representations. 

The problem however is that this approach does not reflect two fundamental issues 
with groupware: (1) the focus should move from the interactions between user and 
physical interface towards the more complex interactions between users, mediated by 
the physical interface; and (2) with groupware, the conventional flows of information 
are considerably changed to reflect multiple control centers and parallel activities. 
From our point of view, in order to address these groupware issues, we have to re-
analyze how the physical interface handles communication flows and discuss its role 
in relation with multi-user interactions.  

In the singleware context, we may characterize the conventional flow of 
information in two different categories: feedback and feedforward. The first category 
corresponds to a flow of information initiated by the user, for which the physical 
interface conveys feedback information to make the user aware of the executed 
operations [12]. The second category concerns the delivery of feedforward 
information, initiated by the physical interface, to make the user aware of the afforded 
action possibilities.  

In groupware, however, some additional categories may have to be considered. We 
analyze three different categories: explicit communication, feedthrough and back-
channel feedback. The explicit communication, as defined by [3], addresses 
information produced by one user and explicitly intended to be received by other 
users. This situation can be modeled as one physical interface capable of multiplexing 
information from one input device to several output devices [11]. The immediate 
impact on the model shown in Figure 1 is that we now have to explicitly consider 
additional users connected to the physical interface. 

The feedthrough category concerns implicit information delivered to several users 
reporting actions executed by one user. This flow of information is initiated by the 
physical interface and it is directed towards the other users. A simple form of 
generating feedthrough consists of multiplexing feedback information to several 
users.  

The notion of feedthrough has a significant impact on task modeling for several 
reasons. The first one is that feedthrough is essential to provide awareness about the 
other users and construct a context for collaboration. We can regard this type of 
information as being processed by the physical interface in specialized input and 
output devices, capable of processing sensory information about who, what, when, 
how, where are the other system users. The major purpose of this specialization is to 
make an analytic distinction between awareness and the other types of information 



mediated by the physical interface, so that we may focus on the former and avoid 
analyzing the later.  

Physical Interface

Awareness 
output device

User User

Coupling 
input device

Awareness 
input device

Awareness 
output device

Coupling 
input device

Awareness 
input device

Physical Interface

Awareness 
output device

User User

Coupling 
input device

Awareness 
input device

Awareness 
output device

Coupling 
input device

Awareness 
input device

 
Fig. 2. Modifications to the physical interface required by the groupware architecture 

The proposed awareness output device also addresses one important groupware 
facet: not only it allows users to build a perceptual image of the collaborative context, 
but it also allows them to perceive the role and limitations of the physical interface as 
a mediator. This is particularly relevant when Internet is being used to convey 
feedthrough, causing delays which are significantly longer and less predictable than 
feedback delays [13].  

The third reason for analyzing the impact of feedthrough is related to an important 
characteristic of groupware: it allows users to loose the link between executed 
operations and awareness – a situation called loosely coupled [14]. Two types of 
control are generally supported by groupware in a loosely coupled situation: (1) the 
user may get awareness information on a per-object demand basis, e.g. by moving the 
focus of interest; or (2) the user specifies filters that restrict awareness to some 
selected objects and types of events. In both cases this situation requires some 
cognitive activities from the user to discriminate and control awareness information, 
which can be modeled as a specialized input device devoted to control awareness 
information delivery. 

Finally, the back-channel feedback category concerns unintentional information 
flows initiated by a user and directed towards another user to ease communication. No 
significant content is delivered through back-channel feedback, because it does not 
transmit user’s reflection. Back-channel feedback may be automatically produced by 
the physical interface based on users’ motor or vocal activities. We can model this 
type of activity in the physical interface as information flowing from a user’s 
awareness input device to another user’s awareness output device. 

In Figure 2 we illustrate the modifications to the physical interface required by the 
groupware perspective. Our interpretation of the GOMS architecture, taking the 
groupware perspective in consideration, consists basically of modeling multiple users 
mediated by a shared physical interface; having awareness input and output devices, 
handling awareness information about the users operating in the system; and having 
coupling input devices, responsible for individually controlling the awareness 
information received by users.  

Observe that this groupware architecture does not imply any modifications to 
GOMS, providing instead a contextualized framework adequate to a specialized 
application area, namely groupware. Also, the architecture does not address face-to-
face situations where users exploit visual and body communication channels. 



3. Method Description and Case Study 

We will describe the proposed analytic method using a case study. The case study 
involved the development of a groupware tool for collaborative software quality 
assessment. The tool implements the Software Quality Function Deployment (SQFD 
[15]) methodology as the basic approach for evaluating software quality. The 
objective of this groupware tool is to facilitate the SQFD negotiation process, 
supporting mechanisms in a same-time, different-place mode. More details about this 
tool can be found in [16]. 

Step 1 – Defining the physical interface 

Our first step consists in characterizing the physical interface of the groupware tool 
under analysis. Considering the complexity of many groupware tools, we divide this 
physical interface in several components, which we may designate shared spaces, 
defined as follows: a shared space is a distinctive combination of awareness 
input/output and coupling devices, capable of producing explicit communication, 
feedthrough and back-channel feedback.  

In our case study, we find two shared spaces. The SQFD shared space, shown in 
Figure 3, allows users to inspect a matrix of correlations between product 
specifications and customer requirements, as well as observing which correlations are 
under negotiation. Limited awareness is provided in this space, but there is a coupling 
mechanism allowing users to analyze a cell in more detail. This coupling mechanism 
leads users to the “Current Situation” shared space shown in Figure 4.  

The “Current Situation” space displays the overall status of the negotiation process, 
reminding about the cell that is currently selected in the SQFD shared space and 

 

SQFD shared space:
Awareness inputs: None available
Awareness outputs: Correlations 
(0,1,3,9) and ongoing negotiations 
(?,F,L)
Coupling: Double clicking to analyze 
cell in detail

 
Fig. 3. The SQFD shared space 



showing the various positions assumed by all negotiators. The bottom half of this 
space allows users to express their individual positions.  

Current Situation shared space:
Awareness outputs: Negotiation 
status, including positions in favor 
and against, and arguments
Coupling: Users may open/close 
positions and arguments

Awareness inputs: Users 
define their positions and 
arguments, for which 
feedthrough information is 
generated

 
Fig. 4. The Current Situation shared space 

Note that the SQFD and “Current Situation” shared spaces provide several pieces 
of awareness information about the SQFD process. Considering the SQFD space, the 
users may perceive selected correlations (values 0,1,3,9) and negotiation status (?,F,L) 
for each cell. The top half of the “Current Situation” space displays the current 
correlation, positions in favor and against, and users’ arguments supporting those 
positions. All this information is constantly updated according to feedthrough 
information obtained by the system.  

Step 2 – Breakdown definition of collaborative activities 

In this second step we describe the functionality associated to the identified shared 
spaces. Following the GOMS approach, the shared spaces functionality is 
successively decomposed from the more general to the more detailed.  

Let us exemplify with our case study. The first method we illustrate in Figure 5 is 
the “Negotiate SQFD”, describing how a user interacts with the SQFD shared space.  

The method consists of mentally selecting a cell in the SQFD, analyzing its status, 
and deciding or not to negotiate the cell using the “Current Situation” space. The task 
is considered finished when the user accepts all values in the SQFD.  

We show the additional details of two lower-level methods related with the SQFD 
space. The first one describes how users analyze the cell situation, which includes 
analyzing awareness information about the activities of others on the same cell in the 
SQFD space. The second method describes how a user accesses the “Current 
Situation” space.  



 

Fig

W
spa
valu
deta
Not
cur
con

N
inte
way
allo
too
neg
blo
and
sign
of c
use
the 

 

Method: Negotiate SQFD 
S1. Select cell. 
S2. Analyze situation of cell.  
S3. If want to negotiate value, then accomplish goal: Open Current Situation. 
S4. If agreement on all cells, return with goal accomplished. 
S5. Go to S1. 

Method: Analyze situation of cell. 
S1. Verify cell is empty or 0,1,3,9,?,F,L. 
S2. Return with goal accomplished. 

Method: Open Current Situation. 
S1. Double click on cell. 
S2. Return with goal accomplished. 

Method: Negotiate value 
S1. Analyze current situation. 
S2. If do nothing, return with goal accomplished.  
S3. If want other value, then accomplish goal: Propose alternative value. 
S4. If insist on a value, then accomplish goal: Support proposed value. 
S5. If agree with others, then accomplish goal: Withdraw proposed value. 
S6. If change opinion, then accomplish goal: Change proposed values. 
S7. If want to block, then accomplish goal: Block negotiation. 
S8. If want to unblock, then accomplish goal: Unblock negotiation. 
S9. If want firm position, then accomplish goal: Firm position. 
S10. If remove firm position, then accomplish goal: Remove firm positions. 
S11. If system is requesting confirmation, then accomplish Goal: Confirm value. Else go to S1.
S12. Return with goal accomplished. 

. 5. Methods describing shared spaces functionality (excerpt) 
e also describe in Figure 5 the functionality associated to the “Current Situation” 
ce, which is significantly more complex than the SQFD space. The “Negotiate 
e” method describes how users interact with this space at the highest level of 
il. The users face several alternative actions while negotiating a value for the cell. 
e in Step 11 that the system may request a confirmation from the user about the 
rent correlation proposed for the cell. If all users agree, then the negotiation is 
sidered finished for that cell. 
ote also that the groupware tool gives the privilege to a user to block the 

raction over a cell, a situation that is common in negotiations and used in various 
s to increase individual gains. Another functionality supported by the tool is 
wing a user to manifest a “firm” position about a cell value. In this situation, the 
l asks the other users if they agree with the firm position. If everybody agrees, the 
otiation of the cell is considered complete; otherwise, it is handled similarly to a 
cking situation. The complete description of this functionality is very extensive 
 therefore omitted from the paper. We observe however that this step requires a 
ificant amount of work to go down to methods describing the fine grained details 
ollaborative activities (e.g. consider that the “Current Situation” may require the 

r to scroll down to find the negotiation details, thus increasing the complexity of 
“Analyze current situation” method).  



Step 3 – Detailed analysis of collaborative activity definitions 

In this step the method proceeds with a detailed analysis of the specification, as 
proposed by GOMS approach. The focus on collaborative activities derives from the 
application of the modified architecture perspectives on steps 1 and 2. We centre on a 
basic measure obtained from method definitions to benchmark design solutions: 
cognitive workload, defined as the number of steps specified in a method, including 
steps specified in lower-level methods (e.g. the “Negotiate SQFD” method has 9 
steps).  

Let us illustrate this analysis with our case study. An important goal that we had to 
accomplish when developing the SQFD tool was to make the negotiation of a cell a 
highly efficient task, since a SQFD matrix many times has hundreds of cells which 
may have to be individually negotiated. This optimization was mostly done by 
working on the cognitive workload measures of the “Negotiate value” and “Analyze 
current situation” methods. Both of them have high cognitive workloads for several 
reasons. The “Analyze current situation” method (not specified in the paper) has high 
cognitive workload because it examines how users perceive the current situation of a 
cell, which may already have been subject to a long negotiation process and requires 
the user to recall and go through several correlation values, issues, positions and 
arguments. This requires a significant number of verifications and decisions. A design 
solution to avoid this complexity, suggested by our analysis, consisted in structuring 
information in multiple levels, providing the most important information (positions in 
favor or against) in the first place, so that the user may “conserve” cognitive effort 
avoiding to go through the other information elements (so, the tradeoff was to have 
more methods with few steps).  

The “Negotiate value” method (described in Figure 5) has high cognitive workload 
because of the number of decisions faced by the user: do nothing, propose, other 
value, change opinion, etc. Ten decisions were identified. However, analyzing the 
design implications, we preferred to concentrate all those decisions on one single 
method to optimize the time spent performing this necessary task (so, the tradeoff was 
to have few methods with many steps).  

4. Discussion of Results and Conclusions 

This paper presents an analytical method, derived from GOMS, to evaluated 
groupware usability during the design stage as a complement of traditional methods 
based on ethnography and real settings evaluation. The method is a revised version of 
a previous method discussed by the authors [17]. The example discussed in this paper 
illustrates well the proposed design method in which the whole collaboration process 
may be structured as a repetitive collection of smaller collaborative tasks orchestrated 
through a shared space. We believe the combination of this method with traditional 
usability evaluation is mostly adequate to successful groupware interface design.  

The method has a strict focus on shared space functionality, allowing to benchmark 
different design solutions based on cognitive workload. The cognitive workload 
measures the presumed effort necessary to collaborate through shared spaces, based 
on the total number of steps defined in methods describing collaborative activities.  



Unquestionably, one salient characteristic of this method is that it does not focus 
on collaboration as a process. For instance, the SQFD tool implements a negotiation 
protocol, where an initial bid is offered and other people negotiate their bids until 
everyone agrees (see [16] for a detailed explanation).  

Although this process may be inferred by a detailed analysis of the method 
specifications, we argue the approach does not make it salient, giving importance to 
the mediating role of the shared spaces and the opportunities to optimize shared space 
usability. Therefore, this method should be regarded as complementary to other 
methods evaluating broader aspects of collaboration design. The fundamental 
implication for design raised by this method is that very fine-grained design decisions 
related with shared space usability might now be evaluated with an objective 
criterion: cognitive workload.  
 
Acknowledgments 
This work was partially supported by grant from CNPq Prosul. Professor Marcos R.S. Borges 
was partially supported by a grant from the “Secretaria de Estado de Educación y 
Universidades” of the Spanish Government. The work of Professor José A. Pino was partially 
supported by a grant from Fondecyt (Chile) No. 1040952. 

References 

1. Pinelle, D., Gutwin, C.: Groupware Walkthrough: Adding Context to Groupware Usability 
Evaluation. Proceedings of the SIGCHI conference on Human factors in computing 
systems: Changing our world, changing ourselves. ACM Press, Minneapolis, Minnesota, 
USA (2002) 455-462 

2. Grudin, J.: Groupware and Social Dynamics: Eight Challenges for Developers. 
Communications of the ACM 37 (1994) 92-105 

3. Pinelle, D., Gutwin, C., Greenberg, S.: Task Analysis for Groupware Usability Evaluation: 
Modeling Shared-Workspace Tasks with the Mechanics of Collaboration. ACM 
Transactions on Computer-Human Interaction 10 (2003) 281-311 

4. Steves, M., Morse, E., Gutwin, C., Greenberg, S.: A Comparison of Usage Evaluation and 
Inspection Methods for Assessing Groupware Usability. Proceedings of the 2001 
International ACM SIGGROUP Conference on Supporting Group Work, Boulder, 
Colorado, USA (2001) 125-134 

5. Card, S., Moran, T., Newell, A.: The Psychology of Human-Computer Interaction. 
Lawrance Elrbaum, Hillsdale, NJ (1983) 

6. Kieras, D.: A Guide to Goms Model Usability Evaluation Using Ngomsl. University of 
Michigan (1996) 

7. John, B., Kieras, D.: Using Goms for User Interface Design and Evaluation: Which 
Technique? ACM Transactions on Computer-Human Interaction 3 (1996) 287-319 

8. Card, S., Moran, T., Newell, A.: The Keystroke-Level Model for User Performance Time 
with Interactive Systems. Communications of the ACM 23 (1980) 396-410 

9. Kieras, D., Wood, S., Meyer, D.: Predictive Engineering Models Based on the Epic 
Architecture for a Multimodal High-Performance Human-Computer Interaction Task. 
ACM Transactions on Computer-Human Interaction 4 (1997) 230-275 

10. Ritter, F., Baxter, G., Jones, G., Young, R.: Supporting Cognitive Models as Users. ACM 
Transactions on Computer-Human Interaction 7 (2000) 141-173 



11. Kieras, D., Santoro, T.: Computational Goms Modeling of a Complex Team Task: Lessons 
Learned. Proceedings of the SIGCHI conference on Human factors in computing systems. 
ACM Press, Vienna, Austria (2004) 97-104 

12. Douglas, S., Kirkpatrick, A.: Model and Representation: The Effect of Visual Feedback on 
Human Performance in a Color Picker Interface. ACM Transactions on Graphics 18 (1999) 
96-127 

13. Gutwin, C., Benford, S., Dyck, J., Fraser, M., Vaghi, I., Greenhalgh, C.: Revealing Delay in 
Collaborative Environments. Proceedings of the SIGCHI conference on Human factors in 
computing systems. ACM Press, Vienna, Austria (2004) 503-510 

14. Dewan, P., Choudhary, R.: Coupling the User Interfaces of a Multiuser Program. ACM 
Transactions on Computer-Human Interaction 2 (1995) 1-39 

15. Haag, S., Raja, M., Schkade, L.: Quality Function Deployment Usage in Software 
Development. Communications of the ACM 39 (1996) 41-49 

16. Ramires, J., Antunes, P., Respício, A.: Software Requirements Negotiation Using the 
Software Quality Function Deployment. In: Fuks, H., Lukosch, S., Salgado, A. (eds.): 
Groupware: Design, Implementation, and Use, Vol. 5807. Springer-Verlag, Heidelberg 
(2005) 

17. Antunes, P., Borges, M.R.S., Pino, J.A., Carriço, L.: Analyzing Groupware Design by 
Means of Usability Results. In: Shen, W., James, A., Chao, K., Younas, M., Lin, Z., 
Barthès, J. (eds.): Proceedings of the Ninth International Conference on Computer 
Supported Cooperative Work in Design (CSCWiD '05). Coventry University UK, 
Coventry, UK (2005) 283-288 

 




