
Analyzing Shared Workspaces Design
with Human-Performance Models

Pedro Antunes1, Antonio Ferreira1, and Jose A. Pino2

1 Department of Informatics, University of Lisbon, Portugal
paa@di.fc.ul.pt, asfe@di.fc.ul.pt

2 Department of Computer Science, Universidad de Chile, Chile
jpino@dcc.uchile.cl

Abstract. We propose an analytic method to evaluate synchronous
shared workspaces design. The method uses human-performance mod-
els, developed in the Human-Computer Interaction field, to make time
predictions about collaborative actions performed in selected critical sce-
narios. We apply this method to two case studies: the design of a col-
laborative game and the redesign of a collaborative tool for software en-
gineering requirements negotiation. The benefits and limitations of the
method are discussed, as well as some implications for design.

1 Introduction

The design and evaluation of groupware usability is a challenging endeavor for
practitioners and researchers because existing methods have considerable trade-
offs and impose significant constraints:

– On the one hand, the required evaluation resources (time, users, experts, ap-
paratus) may be hard to find or simply unavailable, a condition that worsens
due to the iterative nature of formative usability evaluation. This applies es-
pecially, but not exclusively, to controlled laboratory experiments [1];

– On the other hand, several evaluation methods are either descriptive or pre-
scriptive and therefore provide little support for comparing design options
and predicting usability results. This applies to methods such as Groupware
Task Analysis [2], Collaboration Usability Analysis [3], Groupware Walk-
through [4], and Groupware Heuristic Evaluation [5].

We argue that groupware designers should complement existing practice and
knowledge with the ability to make quick measurements and calculations about
key characteristics of computer-mediated collaboration. Our motivation is based
on the century-old need to measure before improving as well as on the evidence
that fast evaluation enables several design iterations. We introduce a method
that can be applied without users or functional prototypes to quantitatively
predict and compare the usability of synchronous shared workspaces (here re-
ferred to as shared workspaces).

paa
Antunes, P., A. Ferreira and J. Pino (2006) Analyzing Shared Workspace Design with Human-Performance Models. Groupware: Design, Implementation, and Use. 12th International Workshop, CRIWG 2006, Medina Del Campo, Spain, September 2006 Proceedings. Y. Dimitriadis, I. Zigurs and E. Gómez-Sanchéz. Lecture Notes in Computer Science, vol. 4154, pp. 62-77. Heidelberg, Springer-Verlag.

Shared workspaces present an interesting challenge to usability evaluation
because collaboration among group members features strong interdependencies
wherein individual actions affect the choices and outcomes of the other users.
Furthermore, the impact of small, low-level, design decisions requiring percep-
tual or motor activity is much higher than in other contexts, where the emphasis
may be on more cognitive tasks, such as decision making. These characteristics
of shared workspaces are usually not captured by existing methods and tend to
be overlooked. Instead, these methods focus on generic, high-level, communica-
tion and coordination mechanisms that the groupware should provide to sup-
port collaboration (e.g. the mechanics of collaboration [3]). We approach these
two aspects of shared workspaces—action interdependencies and attention to
detail—by focusing on the analysis of critical scenarios and by applying existing
human-performance models from the Human-Computer Interaction (HCI) field:

– The analysis of critical scenarios raises the designer’s consciousness about
collaborative actions that have a potentially important effect on individual
and group performance;

– The human-performance models address the fine-grained details of the inter-
action with the shared workspace and provide performance estimates without
the participation of users or the development of prototypes.

Human-performance models, such as the Keystroke-Level Model (KLM) [6],
are based on a cognitive architecture that approximates single-user interaction at
a low level of detail (e.g. perceptual, motor, and cognitive processors). We discuss
the contextualization of this cognitive architecture to the specific characteristics
of groupware in Sect. 3, and introduce some basic concepts necessary to model
awareness and control of information about the users’ collaborative actions.

Section 4 describes the proposed method for evaluating group performance
of users working together in a shared workspace. Two case studies are presented
in Sect. 5 involving shared workspaces design to demonstrate the value of this
method. We conclude the paper in Sects. 6 and 7 with a discussion of the benefits
and limitations of the method, as well as with some implications for design.

2 Related Work

The application of human-performance models to the groupware context is very
rare in the literature and virtually inexistent for workspace collaboration. We
start this section with an overview of Distributed GOMS (DGOMS) [7] and a
recent study involving a complex group task [8]. In both cases the same family
of techniques, called GOMS (Goals, Operators, Methods, and Selection rules)
[9], is used to provide quantitative estimates of human performance.

DGOMS [7] applies hierarchical task analysis and human-performance mod-
els to represent group activity and to predict execution time, distribution of
workload, and other performance variables. This method successively decom-
poses group work in group tasks until individual subtasks can be identified. At
this level of detail the subtasks are defined in terms of perceptual, cognitive, and

motor operators, as well as with a new communication operator that is used to
coordinate individual tasks executed in parallel. The problem, however, is that
such a coordination mechanism is more appropriate to groups where users react
to predefined events, and not sufficiently rich to describe the type of interdepen-
dency established by users working through shared workspaces [10].

Another application of human-performance models to groupware considers
“teams of models” to analyze a complex task executed by a group of users [8].
The task involved several users with individual roles monitoring a display and
executing actions in a coordinated way, via a shared radio communication chan-
nel. While this approach assumes that several individual models are necessary to
explain collaborative work, the study does not address workspace collaboration
and focuses instead on coordinated work.

We now review some usability evaluation methods specifically developed for
groupware. Groupware Task Analysis [2] is a method that combines high-level
hierarchical task analysis and field observations for addressing all stages of group-
ware design. It is based on a conceptual framework including agents, group work,
and situation, in a similar manner to the work models defined by the Contextual
Design approach [11], well known in the HCI field.

The next three methods of groupware usability evaluation are based on a
common descriptive framework called “mechanics of collaboration” [3], whereas
each method applies a different evaluation perspective. The mechanics are for-
malizations of high-level group work primitives (e.g. communicating and coor-
dinating) that helps the designer focus on how the shared workspace supports
the required collaboration. Starting with Collaboration Usability Analysis [3],
this method couples field observations and a version of hierarchical task analysis
that allows variation, iteration, and parallel work, for representing group work.
The Groupware Walkthrough [4] method uses step-by-step written narratives or
task diagrams corresponding to collaborative scenarios, and it aims at gather-
ing the opinions of expert inspectors while using the shared workspace. Finally,
Groupware Heuristic Evaluation [5] is based on a number of experts evaluating
the compliance of a shared workspace with a list of heuristics.

In summary, existing methods for groupware usability evaluation are of two
types: the first type is targeted at predicting performance in coordinated work
scenarios where users react to predefined events (not even requiring group aware-
ness); the second type can be applied to shared workspaces but have a descrip-
tive or prescriptive nature that allows for high-level task analysis or depends on
inspections performed by multiple usability experts. Our proposed method com-
plements these two types of methods by addressing detailed interdependencies
in critical scenarios of collaboration using existing human-performance models.

3 Theoretical Background

In general, human-performance models have been associated with the Model
Human Processor (MHP) [9], that represents human information processing ca-
pabilities using perceptual, motor, and cognitive processors. Nevertheless, sev-

eral architectural differences are identified when considering individual models:
for instance, KLM uses a serial-stage architecture, while CPM-GOMS addresses
multi-modal and parallel human activities (e.g. recognizing an object on the dis-
play while moving the hand to the keyboard) [12]. In spite of these differences,
a common characteristic of existing human-performance models is that they are
singleware, that is, they assume that just one user interacts with a physical in-
terface. Figure 1 depicts this singleware architecture based on the MHP. We also
illustrate that there is a conventional information flow in this architecture, from
the cognitive to the motor processors, from the input to the output devices, and
from the perceptual to the cognitive processors.

Fig. 1. Singleware architecture

According to some authors [8], the architecture depicted in Fig. 1 applies to
groupware: to model a group of users, one can have individual models of the in-
teraction between each user and the physical interface; one can also assume that
the physical interface is shared by multiple users, and that the users will deploy
procedures and strategies to communicate and coordinate individual actions.
Thus, according to this view, groupware usage is reflected in some conventional
information flows, spanning multiple users, which still may be described using
the conventional production rules and representations.

The problem, however, is that this approach does not consider two fundamen-
tal groupware features: (1) the conventional information flows are considerably
changed to reflect collaborative actions, mutual awareness, and interdependence;
and (2) the focus and granularity should not remain on the interactions between
the user and the physical interface but should significantly change to reflect the
interactions between users, mediated by the physical interface. We address these
two issues in the next section.

3.1 Groupware Conventional Information Flows

Let us start with the singleware architecture. In this context, we may characterize
the conventional information flows in two categories: feedback and feedforward.
The first category corresponds to information initiated by the user, for which the

physical interface conveys feedback information to make the user aware of the
executed operations [13,14]. The second category concerns the delivery of feed-
forward information, initiated by the physical interface, to make the user aware
of the afforded action possibilities [14]. Now, when we regard groupware, some
additional categories have to be considered. In this paper we analyze explicit
communication, feedthrough, and back-channel feedback.

Explicit communication addresses information produced by one user and ex-
plicitly intended to be received by other users [3]. For example, a user may
express a request for an object to another user. This situation can be modeled
as a physical interface capable of multiplexing information from input devices
to several output devices. The immediate impact on the model in Fig. 1 is that
we now have to explicitly consider additional users connected to the physical
interface, as shown in Fig. 2.

Fig. 2. Groupware architecture

Feedthrough concerns implicit information delivered to several users report-
ing actions executed by one user [15]. Feedthrough is essential to provide group
awareness and to construct meaningful contexts for collaboration. For example,
the shared workspace may show currently selected menus for each user that is
manipulating objects. This information is automatically generated by the physi-
cal interface as a consequence of the user’s inputs, and it is directed towards the
other users. A very simple way to generate feedthrough consists of multiplexing
feedback information to several users. Sophisticated schemes may consider de-
livering less information by manipulating the granularity and timing associated
to the operations executed by the groupware [16].

Finally, back-channel feedback concerns unintentional information flows initi-
ated by one user and directed towards another user to facilitate communication
[17]. No significant content is delivered through back-channel feedback, because
it does not reflect cogitation from the user. Back-channel feedback may be au-
tomatically captured and produced by the physical interface based on the users’
body gestures and vocal activities.

3.2 Groupware Specializations of Physical Interface Devices

All information flows in the groupware architecture are naturally processed by
the user’s cognitive, perceptual, and motor processors, and the corresponding
physical input and output devices. However, we regard the separate processing of
explicit communication, feedthrough, and back-channel feedback in specialized
input and output devices to show the distinction between collaborative and
non-collaborative interactions. We define the awareness input/output devices as
devices specialized in processing sensory information about who, what, when,
how, and where are the other users operating in the shared workspace.

Another specific feature of the awareness input/output devices is that they
not only afford users to construct a perceptual image of the collaborative con-
text, but they also allow users to perceive the role and limitations of the physical
interface as a mediator. This is particularly relevant when the Internet is being
used to convey feedthrough information, where feedthrough delays are signifi-
cantly longer and less predictable than feedback delays [18] and the available
bandwidth and network availability may be limiting factors [19].

A further reason for proposing the awareness input/output devices is related
to another particular characteristic of groupware: it lets users loose the link
between executed operations and group awareness, a situation called “loosely
coupled” [20]. Two types of coupling control may be considered: at the origin
and at the destination. Users may control coupling at the origin to specify what
and when private information should become public. But coupling can also be
controlled at the destination: getting awareness information on a per-object de-
mand basis, e.g. by specifying filters that restrict received awareness to some
selected objects and types of events. In all cases this situation requires some
cognitive activities from the user to discriminate and control awareness informa-
tion delivery, and we model this situation with the coupling input device.

We illustrate the resulting groupware physical interface in Fig. 3. In sum-
mary, our interpretation of the MHP architecture, taking the groupware context
in consideration, essentially emphasizes the cognitive activities related to the
awareness and coupling features supported by the groupware physical interface.

4 Method to Evaluate Group Performance

Step 1: Defining the physical interface. The method starts by defining the phys-
ical interface of the groupware under analysis. We propose that the physical
interface may be decomposed into several shared workspaces. Such decompo-
sition simplifies the analysis of complex groupware tools, that often organize
collaborative activities in multiple intertwined spaces, usually human recogniz-
able, supporting various purposes, objects, and functionality.

Using the groupware physical interface in Fig. 3 as reference, we define a
shared workspace as a distinctive combination of awareness and coupling devices.
We exclude from the analysis any workspaces not having, at least, one awareness
or coupling device, since they would not involve collaboration.

Fig. 3. Groupware physical interface

The outcome of this step is then: (1) a list of shared workspaces; (2) defini-
tion of supported explicit communication, feedthrough, and back-channel feed-
back information; and (3) characterization of supported coupling mechanisms.
In this step alternative design scenarios may also be defined, considering dif-
ferent combinations of shared workspaces, awareness information, and coupling
mechanisms.

Step 2: Breakdown definition of critical scenarios. The second step describes
the functionality associated with the various shared workspaces with respect to
critical scenarios, i.e. with a special focus on collaborative actions that have a
potentially important effect on individual and group performance. This func-
tionality is successively decomposed from the more general to the more detailed,
using a top-down strategy, typical of hierarchical task analysis. Alternative de-
sign scenarios may be defined, considering several combinations of users’ actions.

Step 3: Comparing group performance in critical scenarios. The final step is
dedicated to compare the alternative design scenarios defined in the previous
steps. These comparisons require a common criteria, for which we selected the
predicted execution time in critical collaborative scenarios.

We utilize the Keystroke-Level Model (KLM) [6] to predict execution times
because it is relatively simple to use and has been successfully applied to evaluate
single-user designs [12]. In KLM, each user action is converted into a sequence
of mental and motor operators, whose individual execution times have been em-
pirically established and validated in psychological experiments: M is for mental
preparation and takes 1.2 seconds; P is for pointing with the mouse to a target on
a display, requiring 1.1 seconds; and K is for pressing or releasing a mouse button,

taking 0.1 seconds [6,9]. Therefore, the designer may find out which sequence of
operators minimizes the execution time of a particular user action.

Naturally, the application of KLM must be adapted to groupware, considering
that the execution time we want to evaluate encompasses several users who work
in parallel. Our approach consists of focusing the analyses on critical scenarios
involving selected sequences of operations from more than one user. For instance,
suppose we want to analyze several design alternatives for managing the access
to shared workspace objects. A critical scenario occurs when a user accesses
the object, immediately followed by another one trying to access the object but
finding it locked. We may use KLM to estimate the execution times of these
combined operations for each design option, and thus finding out which one
minimizes the overall execution time. We discuss in detail the application of this
method to groupware design in the next section.

5 Using the Method

5.1 Collaborative Game

We apply the method to a collaborative game in this case. The game explores a
collaborative scenario where players have specific roles and act opportunistically
according to the current state of the shared workspace. In particular, players
can make either vertical or horizontal connections between points in a board.
The objective of the game is to connect all points in the board as quickly as
possible (Fig. 4). The points are connected in pairs, but this is only allowed if
at least one of the to-be-connected points is already linked to a third point via a
perpendicular connection. Initially, the board contains a single connection line.

Fig. 4. Players act opportunistically to make connections between all points

Step 1: Defining the physical interface. The game provides a shared workspace
displaying a public updated view of the board (Fig. 4). There exist several private
workspaces also, one for each player, allowing them to actually connect the points
with horizontal or vertical lines, depending on their specific role. However, the
analysis of these private workspaces is out of scope, since we are only interested
in collaborative actions. The player’s moves are restricted to be done with a
mouse having a single button.

Step 2: Breakdown definition of critical scenarios. The board operates in the
following way. In order to connect two points, a player must first reserve them
on the board. Multiple players may not simultaneously reserve the same points,
but as this can happen and have a considerable performance penalty, we consider
this a critical scenario. Reservation is done by selecting two adjacent points with
the mouse and dragging them out of the board (to a private workspace). The
connection is made public when the points are dragged back to the board, an
action that also automatically releases the points. This is our design scenario A.

We also analyze an alternative scenario B, where, in order to increase aware-
ness and minimize inadvertent selections of reserved points, the board displays
a letter identifying the current owner next to the reserved points. This design
provides awareness information only at the end of the reserve or release actions.

An additional alternative design scenario C features extra awareness while the
points are being selected on the board. The main justification for this refinement
is the production of more fine-grained and up-to-date awareness information.

We will next proceed with a detailed specification of the collaborative ac-
tions for the selected critical scenario. For now, we observe there are only two
collaborative actions in this game, which we designate RESERVE and RELEASE.

Step 3: Comparing group performance in critical scenarios. We now focus on
the fine-grained details of the RESERVE and RELEASE collaborative actions, to
the point where they can be described with KLM operators. Starting with the
RESERVE action, we assume the player begins by searching the shared workspace
for a point that satisfies three conditions: (1) it must not be reserved; (2) it
must allow a new connection; and (3) it must have a perpendicular connection to
another point. This is converted into a single M operator because the verification
of the three conditions is highly repetitive and players are trained in the game.

Once a point is located, the player moves the mouse pointer near it, P, presses
the mouse button, K, and moves the pointer to an adjacent point, P (the connec-
tion between these two points will be drawn afterwards in the private workspace).
The player then releases the mouse button, K, to complete the selection.

The last part of a reservation is done by dragging the selected points out of
the board: the player adjusts the mouse pointer so that it rests on top of the
adjacent point, P, presses the mouse button, K, drags the selected points out of
the board, P (no M operator is required because the workspaces are always in
the same place), and releases the mouse button, K. The complete sequence of
KLM operators for the RESERVE collaborative action is MPKPKPKPK, which has a
predicted execution time of 6 seconds. The RELEASE collaborative action is very
similar to RESERVE in two ways: the predicted execution time is also 6 seconds,
and the sequence of KLM operators is again MPKPKPKPK.

Now, having determined the sequences of operators for managing the board,
we focus on the comparison of group performance in the critical scenario—when
two players have the intention of reserving the same points—for the design al-
ternatives A and B. We assume the first player will always succeed in order to
simplify the analysis, and also that having more than 2 players reserving the
same points is a rare event that does not deserve further attention.

Considering the design scenario A, the best case happens when two players
start the reservation for the same points at the same time. In this case, after
the 6 seconds needed for a complete reservation, the second player notices an
error indication on the board (an M operator) and starts again with other points,
which takes additional 6 seconds. The best execution time is then 13.2 seconds.
The worst case happens when the second player begins just after the first player
finishes a reservation; since no awareness information is provided, the total exe-
cution time increases to 19.2 seconds (see Scenario A in Fig. 5).

Fig. 5. Best and worst execution times for handling the critical scenario

For the scenario B, the best case is identical to that of scenario A. However,
the execution time for the worst case is significantly reduced because the sec-
ond player can interrupt an ongoing reservation as soon as the owner letter is
displayed on the board. We represent this situation with two M operators: the
first corresponds to the initial M of any reservation, while the second M is for

interpreting the critical situation. The total execution time for the worst case is
now 14.4 seconds (see scenario B in Fig. 5).

The optimization considered in scenario C provides awareness information
upon the selection of the first point, i.e. right after a sequence of MPK (instead
of the full MPKPKPKPK). In these circumstances both the best and worst cases
benefit from reduced execution times (see scenario C in Fig. 5). If the two players
start the reservation at the same time, then at about 2.4 seconds they both see
their simultaneous selections on the board. Then, the second player (by our
assumption) decides to stop the current selection and starts another one, an
M followed by a new reservation, which takes 9.6 seconds. The worst case takes
10.8 seconds; its explanation is analogous to the worst case for scenario B, except
the awareness supplied by the owner letter upon a full reservation is substituted
by the awareness provided by the selection of the first point.

In summary, the method brought quantitative insights about the role of
feedthrough information in group work support, predicting that for the selected
critical scenario the design option C is faster than B by 3.6 seconds, and that B
is faster than A by about 4.8 seconds, but only in the worst case scenario.

5.2 Software Requirements Negotiation Tool

We now demonstrate the application of the analytic method to an existing group-
ware tool that supports collaborative software quality assessment using the Soft-
ware Quality Function Deployment (SQFD) [21] methodology. The objective of
this tool is to facilitate the SQFD negotiation process by providing mechanisms
in a same-time, different-place mode. Our starting point in this case was a pre-
vious experiment with the tool that gathered data via questionnaires, and that
reported some usability problems, namely that it was considered difficult to use.
Further details about this tool and about the previous usability evaluation can
be found in [22].

Step 1: Defining the physical interface. The tool has two shared workspaces:
SQFD matrix and “Current Situation.” The SQFD matrix allows users to inspect
a matrix of correlations between product specifications and customer require-
ments, as well as observing which correlations are under negotiation. Limited
awareness information is provided by the matrix, but there is a coupling mech-
anism allowing users to analyze a cell in more detail. This coupling mechanism
leads users to the “Current Situation,” where they can observe the negotiation
state in detail, including the proposed correlation, positions in favor or against,
and supporting arguments. We briefly characterize the two shared workspaces
in terms of input, output, and coupling devices in Figs. 6 and 7.

Step 2: Breakdown definition of critical scenarios. We focus our discussion on
the “Current Situation” shared workspace to illustrate the method application.
The user arrives to this space with the purpose of analyzing the negotiation
state in detail. As currently implemented by the tool, the status information is
hierarchically organized, showing: (1) the product specifications and customer

Fig. 6. The SQFD matrix

requirements under negotiation; (2) the currently proposed correlation; (3) posi-
tions in favor, followed by positions against the currently proposed correlation;
(4) arguments supporting positions in favor or against. We designate this as
design scenario A.

An alternative design scenario B considers a variation in the way information
is shown to the user. We assume that users may give more importance to the
aggregate information about the number of positions against/in favor, neglecting
positions when there is a clear push towards one side or the other, and analyzing
arguments in detail only when positions are balanced.

The selected critical scenario considers the proposal of an alternative correla-
tion value in “Current Situation” after analyzing the negotiation status. We also
consider a variation in the number of users involved in the negotiation process.
The “Current Situation” may display the positions and arguments for up to 3
users (see Fig. 7). Beyond that number, a user has to scroll down the window
to completely analyze the situation. Thus, we consider 3 and 6 users involved in
the critical scenario. We assume that having more than 6 users negotiating the
same cell is a rare event, which does not deserve further analysis.

Step 3: Comparing group performance in critical scenarios. For the design sce-
nario A and 3 users, we have: the interpretation of the negotiation status, M,

Fig. 7. The “Current Situation” shared workspace

followed by a decision, M, which is expressed via the selection of a check box,
PKK, and a press in the “ok” button, PKK. This gives MMPKKPKK, which has a
total execution time of 5.0 seconds. With 6 users, the execution time increases
to 8.6 seconds, corresponding to MPKPK MMPKKPKK, in which the MPKPK operators
are related to scrolling.

Considering the design option B, we have two situations: either the posi-
tions are balanced (a tie or simple majority) or unbalanced (i.e. absolute ma-
jority). In the unbalanced case, we assume the user will neglect arguments and
thus we have MMPKKPKK (5.0 seconds to execute), similar to the previous sce-
nario with 3 users. In the balanced case the user will analyze the positions in
detail via the interpretation of the negotiation status, M, followed by the open-
ing of the list of favorable arguments, PKK, and corresponding analysis, M, upon
which the list is closed, PKK, to give room for the opening and interpretation of
the against arguments, PKK M, so that, finally, the decision is made, MPKKPKK.
The total execution time for the balanced case, MPKKMPKKPKKMMPKKPKK, is then
11.3 seconds. Note that these measures apply to the scenarios with 3 and 6
users. We also assume that the probability of having unbalanced positions is
25%3. Hence, in these circumstances, the average execution time for scenario B
is about 0.75 × 11.3 + 0.25 × 5.0 ≈ 9.8 seconds, which is higher than scenario
A for both 3 and 6 users. In other words, scenario B may be better or equal
than scenario A, but there is a 75% probability that it is worse than scenario A,
which severely penalizes the overall appreciation of the design in scenario B.

3 This is the probability of having an absolute majority with 3 or 6 voters, assuming a
uniform distribution. For 3 voters, the absolute majority requires having all in favor
or against, i.e. 2 out of 8 combinations, or 25%.

6 Discussion and Implications for Design

Both the collaborative game and the requirements negotiation tool analyzed in
this paper heavily depend on shared workspaces to orchestrate multiple users ac-
complishing a collaborative task. The design of these workspaces is thus critical
to the overall task performance. Since we use a quantitative common criterion
to evaluate group performance—the execution time predictions of collaborative
actions in critical scenarios—we may benchmark various design solutions to es-
timate which shared workspace functionality offers the best performance.

It is important to note the two cases studied in this paper are quite distinct.
The collaborative game is a fictitious tool intended to test preliminary design
ideas in environments where players act opportunistically, while the require-
ments negotiation tool is a completely functional tool, that could nevertheless
benefit from further optimizations. We analyzed several design solutions with
the collaborative game related to the way users structure their actions according
to awareness on other people. The requirements negotiation tool helped us to
analyze how a coupling mechanism could be designed to conserve individual cog-
nitive effort. We defined a critical scenario to evaluate the collaborative game
highlighting coordination problems. By contrast, the critical scenario used to
evaluate the requirements negotiation tool shows escalating problems with the
number of users engaged in collaborative actions. Taken as a whole, the method
always contributed to formative evaluation, offering clear indications about the
potential performance of users working with shared workspaces.

The proposed method has two important limitations that we would like to
discuss. First, it assumes a narrow-band view about collaboration, restricted to
shared workspaces and their mediation roles. This contrasts with the other avail-
able groupware usability evaluation methods offering a wide-band view about
collaboration, encompassing, for example, various communication channels, co-
ordination policies, and broader issues such as group decision making or learning.
However, the tradeoff to ponder is that the proposed method restricts the view in
order to increase the detail about the mediating role of shared workspaces. This
restricted view has ample justification in contexts where shared workspaces are
heavily used, even when users perform intellective tasks (such as in the require-
ments negotiation case, where users apply their expertise to evaluate software
quality, but are still requested to repetitively operate the tool).

Second, the method is somewhat limited by the selection of critical scenarios.
As designers and evaluators, we have to ponder whether the selected critical sce-
narios are representative and have sufficient impact on the overall collaborative
task to deserve detailed analysis. In our first case, the collaborative game, this
question is delicate because the game was conceived to illustrate the method ap-
plication with that critical scenario. However, the situation was quite different
in the second case, because we started our analytic evaluation with a prelimi-
nary evaluation study indicating that the tool had usability problems [22]. Thus,
some prior evaluation results allowed us to determine the critical scenarios for
the subsequent evaluation task. We conjecture that this cyclic approach may
reduce the bias introduced by critical scenarios. Furthermore, critical scenar-

ios are commonly used as a sampling strategy in qualitative inquiry, allowing
generalization [23]. The proposed method combines qualitative and quantitative
approaches with the same purpose.

7 Conclusions

Confronting the obtained results with the driving forces mentioned in Sect. 1,
we may conclude from this research that the proposed method can be used to
quantitatively predict and compare the usability of shared workspaces, without
requiring users or the development of functional prototypes. More specifically,
available knowledge about human-performance models can be applied to predict
execution times in critical scenarios involving intricate collaborative actions that
have a potentially important effect on individual and group performance.

Research described in this paper is a preliminary step in the direction of
exploring human-performance models to evaluate shared workspaces design. Our
performance estimates were based on experimental measures of time spent by
humans executing single user operations. Experimental research with groupware
will be accomplished in the future, in an attempt to provide estimates for typical
groupware interactions in critical scenarios.

Acknowledgments

This work was partially supported by the Portuguese Foundation for Science
and Technology, Project POSI/EIA/57038/2004.

References

1. Fjermestad, J., Hiltz, S.: An assessment of group support systems experimental
research: Methodology and results. Journal of Management Information Systems
15(3) (1999) 7–149

2. van der Veer, G., van Welie, M.: Task based groupware design: Putting theory
into practice. In: DIS’00: Proceedings of the conference on Designing interactive
systems, New York City, New York, United States (2000) 326–337

3. Pinelle, D., Gutwin, C., Greenberg, S.: Task analysis for groupware usability evalu-
ation: Modeling shared-workspace tasks with the mechanics of collaboration. ACM
Transactions on Computer-Human Interaction 10(4) (2003) 281–311

4. Pinelle, D., Gutwin, C.: Groupware walkthrough: Adding context to groupware
usability evaluation. In: CHI’02: Proceedings of the SIGCHI conference on Human
factors in computing systems, Minneapolis, Minnesota, USA (2002) 455–462

5. Baker, K., Greenberg, S., Gutwin, C.: Empirical development of a heuristic evalu-
ation methodology for shared workspace groupware. In: CSCW’02: Proceedings of
the 2002 ACM conference on Computer supported cooperative work, New Orleans,
Louisiana, USA (2002) 96–105

6. Card, S.K., Moran, T.P., Newell, A.: The keystroke-level model for user perfor-
mance time with interactive systems. Communications of the ACM 23(7) (1980)
396–410

7. Min, D., Koo, S., Chung, Y.H., Kim, B.: Distributed GOMS: An extension of
GOMS to group task. In: SMC’99: Proceedings of the IEEE international confer-
ence on Systems, man, and cybernetics, Tokyo, Japan (1999) 720–725

8. Kieras, D.E., Santoro, T.P.: Computational GOMS modeling of a complex team
task: Lessons learned. In: CHI’04: Proceedings of the SIGCHI conference on Human
factors in computing systems, Vienna, Austria (2004) 97–104

9. Card, S.K., Newell, A., Moran, T.P.: The psychology of human-computer interac-
tion. Lawrence Erlbaum Associates, Mahwah, NJ, USA (1983)

10. Malone, T.W., Crowston, K.: The interdisciplinary study of coordination. ACM
Computing Surveys 26(1) (1994) 87–119

11. Beyer, H., Holtzblatt, K.: Contextual design: Defining customer-centered systems.
Morgan Kaufmann Publishers, San Francisco, CA, USA (1998)

12. John, B.E., Kieras, D.E.: Using GOMS for user interface design and evaluation:
Which technique? ACM Transactions on Computer-Human Interaction 3(4) (1996)
287–319

13. Douglas, S.A., Kirkpatrick, A.E.: Model and representation: The effect of visual
feedback on human performance in a color picker interface. ACM Transactions on
Graphics 18(2) (1999) 96–127

14. Wensveen, S.A.G., Djajadiningrat, J.P., Overbeeke, C.J.: Interaction frogger: A
design framework to couple action and function through feedback and feedforward.
In: DIS’04: Proceedings of the 2004 conference on Designing interactive systems,
Cambridge, MA, USA (2004) 177–184

15. Hill, J., Gutwin, C.: Awareness support in a groupware widget toolkit. In:
GROUP’03: Proceedings of the 2003 international ACM SIGGROUP conference
on Supporting group work, Sanibel Island, Florida, USA (2003) 258–267

16. Gutwin, C., Greenberg, S.: The effects of workspace awareness support on the
usability of real-time distributed groupware. ACM Transactions on Computer-
Human Interaction 6(3) (1999) 243–281

17. Rajan, S., Craig, S.D., Gholson, B., Person, N.K., Graesser, A.C.: AutoTutor: In-
corporating back-channel feedback and other human-like conversational behaviors
into an intelligent tutoring system. International Journal of Speech Technology
4(2) (2001) 117–126

18. Gutwin, C., Benford, S., Dyck, J., Fraser, M., Vaghi, I., Greenhalgh, C.: Revealing
delay in collaborative environments. In: CHI’04: Proceedings of the SIGCHI con-
ference on Human factors in computing systems, Vienna, Austria (2004) 503–510

19. Cosquer, F.J.N., Antunes, P., Verissimo, P.: Enhancing dependability of coop-
erative applications in partitionable environments. Lecture Notes in Computer
Science 1150 (1996) 335–352

20. Dewan, P., Choudhary, R.: Coupling the user interfaces of a multiuser program.
ACM Transactions on Computer-Human Interaction 2(1) (1995) 1–39

21. Haag, S., Raja, M.K., Schkade, L.L.: Quality function deployment usage in software
development. Communications of the ACM 39(1) (1996) 41–49

22. Antunes, P., Ramires, J., Respicio, A.: Addressing the conflicting dimension of
groupware: a case study in software requirements validation (2006) To appear in
Computing and Informatics.

23. Miles, M.B., Huberman, M.: Qualitative data analysis: An expanded sourcebook.
Sage Publications, Thousand Oaks, CA, USA (1994)

