
Analyzing Groupware Design by means of Usability Results

Pedro Antunes1 Marcos R. S. Borges2 Jose A. Pino3 Luis Carriço1
1Department of Informatics, Universidade de Lisboa, Portugal

2Graduate Program in Informatics – Federal University of Rio de Janeiro, Brazil
3Department of Computer Science – Universidad de Chile, Chile

1paa@di.fc.ul.pt, lmc@di.fc.ul.pt 2 mborges@nce.ufrj.br, 3jpino@dcc.uchile.cl

Abstract
GOMS is a well-known model that has been

successfully used in predicting the performance of human-
computer interaction, identifying usability problems and
improving user-interface design. The focus of GOMS on
the individual user, however, explains why it has not been
applied in the groupware context. We were inspired by
GOMS to define a model that describes collaborative
tasks in a formal way. We illustrate the application of the
model by applying it to the design of a collaborative tool
for software engineering requirements negotiation.

1. Introduction

Groupware systems are becoming increasingly popular,
yet many groupware applications still have usability
problems [1]. In groupware, the computer system aims at
supporting human-human interaction affected by variables
such as group dynamics, social culture, and organizational
structure [2]. These variables, whose values are sometimes
unpredictable, make groupware difficult to design,
especially when compared to traditional software [3].

The usability issue has long been recognized as an
important aspect in the design of computer systems. In
groupware it can have a strong impact both on the overall
efficiency and effectiveness of the team, and on the
quality of the work they do [3]. The design of groupware
systems should consider the various aspects that affect
their usability, but there are few proven methods to guide
a successful design. Many researchers believe that
groupware can only be evaluated by studying real
collaborators in their real contexts, a process which tends
to be expensive and time-consuming [4]. Ethnographic
approaches can be utilized to evaluate groupware, but
these techniques require fully functional prototypes, which
are also expensive to develop.

We believe it is more productive to evaluate groupware
through analytic engineering models for usability based on
validated computational models of human cognition and
performance. In this paper we propose the use of a method
based on GOMS [5, 6] to evaluate the usability of
groupware systems. Recognizing the strong theoretical

and practical foundations of GOMS, we are interested on
studying the applicability of some GOMS concepts to the
collaborative context. Using this approach we intend to
generate an effective way of finding usability problems
early in the design of groupware.

GOMS (Goals, Operations, Methods and Selection
Rules) [5] and its family of models, such as GOMSL [6],
offer an engineering solution to the analysis of human-
computer interaction. This approach has been successfully
applied in several situations, to predict usability, to
optimize user interaction or to benchmark tools [7].
GOMS addresses singleware, i.e. one user interacting with
one device. Although it is possible to conceive and model
multiple user interactions with one device using GOMS,
we realized that such an approach is not beneficial for
groupware designers, since they are mainly interested on
the collaborative context.

GOMS is based on a cognitive architecture (user and
device) and a set of building blocks (goals, operators,
methods and selections rules) that describe human-
computer interaction at a low level of detail. We
investigated which modifications would have to be made
to the cognitive architecture and to the building blocks to
apply the same ideas to groupware. This is explained in
Section 2. In order to demonstrate the applicability of the
proposed approach, in Section 3 we use the model to
describe a groupware tool; more specifically we describe a
collaborative tool for software engineering requirements
negotiation. Finally, Section 4 concludes the paper.

2. GOMS and Groupware

In general, the GOMS family of models has been

associated with the Model Human Processor [8], which
represents human information processing capabilities
using perceptual, motor and cognitive processors.
However, significant architectural differences are
identified when considering individual models. For
instance, KLM [8] uses a serial-stage architecture, while
EPIC [9] addresses multimodal and parallel human
activities. In spite of these differences, one characteristic

paa
9th International Conference on Computer Supported Cooperative Work in Design (CSCWD 2005). Coventry, England: IEEE Computer Society Press, May, 2005.

common to the whole GOMS family of models is that it is
singleware [10]: it assumes that one single user interacts
with a physical interface comprising several input and
output devices.

Fig. 1 depicts this singleware architecture based on the
EPIC architecture. According to some authors [11], this
architecture applies to groupware in a very transparent
way: in order to model a team of users, one can model
each individual interaction between the user and the
physical interface; and assume that (1) the physical
interface is shared by multiple users and (2) the users will
deploy procedures and strategies to communicate and
coordinate their individual actions. Thus, groupware usage
will be reflected in conventional flows of information,
spanning several users, which still may be described using
the conventional production rules and representations.

The problem however is that this approach does not
reflect two fundamental issues with groupware: (1) the
focus and granularity should not remain on the
interactions between user and physical interface but
should focus on the interactions between users, mediated
by the physical interface; and (2) with groupware, the
conventional flows of information are considerably
changed to reflect e.g. parallel work. From our point of
view, in order to address these groupware issues, we have
to re-analyze the users’ cognitive processing of the
conventional flows of information and discuss them in
relation with multi-user interactions.

In the singleware architecture context, we may
characterize the conventional flow of information in two
different categories: feedback and feedforward. The first
category corresponds to a flow of information initiated by
the user, for which the physical interface conveys
feedback information to make the user aware of the
executed operations [12]. The second category concerns
the delivery of feedforward information, initiated by the
physical interface, to make the user aware of the afforded
action possibilities.

In groupware, however, some additional categories
may have to be considered. We analyze three different
categories: explicit communication, feedthrough and back-
channel feedback. The explicit communication, as defined
by Pinelle et al. [13], addresses information produced by
one user and explicitly intended to be received by other
users. This situation can be modeled as one physical

device capable to multiplex information from input
devices to several output devices [11]. The immediate
impact on the model shown in Figure 1 is that we now
have to explicitly consider additional users connected to
the physical device.

Physical Interface

Output devices

User
Input devices

Cognitive
processor

Motor processors

Perceptual
processors

Long-term
memory

Conventional
flow

Physical Interface

Output devices

User
Input devices

Cognitive
processor

Motor processors

Perceptual
processors

Long-term
memory

Conventional
flow

Figure 1 - Singleware architecture

The feedthrough category concerns implicit
information delivered to several users reporting actions
executed by one user. This flow of information is initiated
by the physical interface and is directed towards the other
users. A simple form of generating feedthrough consists of
multiplexing feedback information to several users.

The notion of feedthrough has a significant impact on
task modeling for several reasons. The first one is that
feedthrough is essential to provide awareness about the
other users and construct a context for collaboration. We
can regard the processing of awareness information in a
specialized perceptual processor, called awareness
processor, capable of processing sensory information
about who, what, when, how, where are the other system
users. We may also model the delivery of feedthrough to
the awareness processor using a specialized output device,
named awareness output device. Another characteristic of
the awareness processor is that not only it affords users to
build a perceptual image of the collaborative context, but
it also allows them to perceive the role and limitations of
the physical interface as a mediator. This is particularly
relevant when Internet is being used to convey
feedthrough, causing delays which are much higher and
unpredictable than feedback delays [13].

The third reason for analyzing the impact of
feedthrough is related to an important characteristic of
groupware: it can afford users to loose the link between
executed operations and awareness – a situation called
loosely coupled [14]. Two types of control are generally
supported by groupware in a loosely coupled situation: (1)
the user may get awareness information on a per-object
demand basis, e.g. by moving the focus of interest; or (2)
the user specifies filters that restrict awareness to some
selected objects and types of events. In both cases this
situation requires some cognitive activities from the user
to discriminate and control awareness information, which
can be modeled as a specialized motor processor, called
coupling processor. An input device will be devoted to
control awareness information in the physical interface.

Finally, the back-channel feedback category concerns
information flows initiated by a user and directed towards
another user to ease communication. No significant
content is delivered through back-channel feedback,
because it does not transmit user’s reflection. That is the
difference between explicit communication and back-
channel feedback. We can model this type of activity as a
motor activity executed by the coupling processor in
response to some perceived inputs. The outputs produced
by this motor activity will be delivered to other users
through their awareness output device.

 2

In
archit
taking
basica
outpu
other
proces
amoun

Ob
imply
provid
a spec
the ar
where
chann

3. An

Th
the ap
on the
qualit
examp
using

Th
Deplo
appro
this

Physical Interface

Awareness
output
device

User

Input devicesMotor processors

Awareness
processor

Input devices

Feedthrough

User

Motor processors

Awareness
output
device

Awareness
processor

Coupling
processor

Coupling
processor

Coupling
input device

Coupling
input device

Back-channel
feedback

Perceptual
processors Output devices Output devices

Perceptual
processors

Physical Interface

Awareness
output
device

User

Input devicesMotor processors

Awareness
processor

Input devices

Feedthrough

User

Motor processors

Awareness
output
device

Awareness
processor

Coupling
processor

Coupling
processor

Coupling
input device

Coupling
input device

Back-channel
feedback

Perceptual
processors Output devices Output devices

Perceptual
processors

Figure 2 - Groupware architecture
Figure 2 we illustrate the resulting groupware
ecture. Our interpretation of the GOMS architecture,
 the groupware context in consideration, consists
lly of introducing the awareness processor and
t device, handling awareness information from the
users operating in the system; and the coupling
sor and input device, responsible for controlling the
t of awareness information delivered to one user.

serve that this groupware architecture does not
 any modifications to the GOMS architecture,
ing instead a contextualized framework adequate to
ialized application area, namely groupware. Also,
chitecture does not address face-to-face situations
 users exploit visual and body communication
els.

 Example

e following example is intended to briefly discuss
proach developed above. The example is centered
 design of a groupware tool for collective software

y assessment. Only an excerpt is shown. The full
le can be found in [15]. Analyses of real situations
the proposed approach are also being carried out.
e tool implements the Software Quality Function
yment (SQFD [16, 17]) methodology as the basic
ach for evaluating software quality. According to
methodology, software quality is assessed by

inspecting a matrix of correlations between a list of
technical product specifications and a list of customer
requirements. Each cell in this matrix indicates the
strength of the relationship between a product
specification and a customer requirement using the
following numbers: 0, 1, 3 and 9 [16]. The final matrix
should reflect a consensus of all evaluators.

The approach requires obtaining a consensus view
from the customers about the software quality achieved
along the software development process. However,
considering they may have conflicting views, the matrix
tends to be large and the cell values may have to be
individually negotiated. The objective of this groupware
tool is to facilitate this negotiation process, supporting
mechanisms in a same-time, different-place mode. This is
the main collaborative aspect of the tool.

Figure 3 shows our implementation of the SQFD, using
a replicated MS Excel spreadsheet, where the rows
represent the customers’ requirements and the product
specifications appear in the columns. The example shown
in Figure 3 was taken from Herzwurm et al. [18]. Note
that in Figure 3, besides the (0, 1, 3, 9) values, a cell may
also be empty and have the following symbols: (?, F, L).
These symbols mean respectively that the cell is being
negotiated by several customers (?), one customer has a
firm position about a correlation (F), and one customer
locked the negotiation of a cell (L).

3

Customers may have several attitudes towards the
negotiation of a cell, revealed by suggestions of different
values, compromising, and strong positions. At the limit, a
customer may even decide to block or stall the negotiation
process. The groupware tool must support these attitudes.

The negotiation process is supported by two main
components: the MEG client and the MEG server. The
MEG client and the MEG server use TCP/IP and RTD
[19] technology to synchronize replicated MS Excel

spreadsheets, residing in the users’ personal computer. In
this architecture, the users do not input cell values directly
in the Excel spreadsheets, but in the MEG client. The
MEG client interacts with the local replica of the MS
Excel spreadsheets and with the MEG server. The MEG
server is responsible for synchronizing the MEG clients,
while RTD is used to synchronize the data on the
repository with the Excel spreadsheets.

Figure 3 - The SQFD spreadsheet managed by the groupware tool (from [18]

Figure 4 – The MEG user interface Figure 5 – The “firm” situation in MEG
4

The MEG client implements several user interfaces.
Two of them are shown in Figures 4 and 5. The MEG user
interface is divided in two major areas: the “current
situation” area displays the overall status of the
negotiation process, reminding about the cell that is
currently selected in the SQFD spreadsheet and showing
the different positions assumed by all negotiators; while
the area bellow the “current situation” allows the user to
express his/her individual position. Both the top and
bottom areas change according to the status of the
negotiation. The “current situation” area displays the
following information:
• The elements correlated by the cell;
• The first value set by a user for the cell;
• The positions of other users in favor or against this

value;
• The arguments supporting the positions of users.

Both the SQFD and MEG briefly explained above can
be regarded as shared spaces. We will now describe part
of the functionality of these shared spaces using the
GOMS. First, let us specify the following objects that
exist in the shared spaces:

The “Negotiate Spreadsheet” method describes how a
user operates the SQFD. The method consists of analyzing
the spreadsheet and deciding to propose or to negotiate the
value of a cell using MEG. The proposal occurs when the
cell is empty, while the negotiation occurs when the cell
has already a value set. The task is considered finished
whe et.

T
The

includes analyzing feedthrough information about
activities of others on the same cell in the SQFD space.
The second method describes the proposal of an initial
value for an empty cell with MEG. This initial value has a
special treatment by the users, because all of the
subsequently proposed values will be presented by the
system as being against or in favor of the first one.

The “Negotiate Value” method is dedicated to
negotiate a cell value using MEG. The users have several
alternative actions while negotiating a value for the cell.
Note in Step 11 that the system may request a
confirmation from the user about the current value of the
cell. If all users agree, then the negotiation is considered
finished for that cell.

Method: Analyze situation of cell.
S1. Verify cell is empty or 0,1,3,9,?,F,L.
S2. Return with goal accomplished.

Method: Propose initial value.
S1. Accomplish goal: Select value from
0,1,3,9.
S2. Return with goal accomplished.

cell: One cell of the SQFD spreadsheet for
which a value must be agreed by the users
value: The correlation attributed to the cell
issues: The current status of the negotiation of
one cell that is displayed to all negotiators
positions: The component of issues that lists
the positions in favor or against the value
currently in cell
arguments: The component of positions that
lists the arguments supporting a position

We may have several additions to the generic use of
SQFD and MEG. One addresses the privilege given to a
user to block the interaction over a cell, a privilege that is
common in negotiations and used in various ways to
increase individual gains.

n the user accepts all values in the spreadshe
Method: Negotiate spreadsheet
S1. Goal: Select cell.
S2. Goal: Analyze situation of cell.
S3. Decision: If want to propose value, then
accomplish Goal: Propose initial value.
S4. Decision: If want to negotiate value,
then accomplish Goal: Negotiate value.
S5. Decision: If agreement on all cells,
return with goal accomplished.
S6. Go to S1.

here are two auxiliary methods to handle cell values.

 first is intended to analyze the cell situation, which

5

Method: Negotiate value
S1 Goal: Analyze current situation.
S2. Decision: If do nothing, return with
Goal accomplished.
S3. Decision: If want other value, then
accomplish Goal: Propose alternative value.
S4. Decision: If insist on a value, then
accomplish Goal: Support proposed value
S5. Decision: If agree with others, then
accomplish Goal: Withdraw proposed value
S6. Decision: If change opinion, then
accomplish Goal: Change proposed values
S7. Decision: If want to block, then
accomplish Goal: Block negotiation
S8. Decision: If want to unblock, then
accomplish Goal: Unblock negotiation
S9. Decision: If want firm position, then
accomplish Goal: Firm position
S10. Decision: If remove firm position, then
accomplish Goal: Remove firm positions.
S11. Decision: If system is requesting value
confirmation, then accomplish Goal:
Confirm value. Else go to S1
S12. Return with Goal accomplished

Another functionality supported by MEG is allowing a
user to manifest a “firm” position about a cell value. In
this situation, MEG asks the other users if they agree with
the firm position. If everybody agrees, the negotiation of
the cell is considered completed; otherwise, it is handled
similarly to a blocking situation.

4. Conclusions

The groupware tool analyzed provides a good example
of what we called intensive collaboration, i.e., the whole
collaborative task being a repetitive collection of smaller
collaborative tasks, since users have to analyze and
negotiate a large number of cell correlations to obtain a
general consensus.

The results obtained from the example analysis do not
focus on collaboration as a process. For instance, MEG
implements a protocol for handling strong positions with
the following steps: (1) a user defines a strong position on
a value; (2) the other users are informed and questioned if
they accept or not the proposed value; (3) the users
respond; (4) MEG collects the responses and, if all agree,
then the negotiation of the cell ends, otherwise the cell
continues under negotiation, but blocked by a user.
Although this process may be inferred by a detailed
analysis of the described methods, we argue the approach
does not make it salient, giving importance to the
mediating role of the shared workspaces (spreadsheet and
MEG) under the influence of such strong positions.

The implications for design raised by this model are
twofold. The analysis of collaborative work using GOMS
uncovers the mental conditions necessary to accomplish
work, allowing the designers to specify shared artifacts
that ease the users’ grasping the design logic behind the
tool. Designers may also compare different design options
based on the analysis of the cognitive workload of a
groupware tool.

Acknowledgments

This work was partially supported by grant from CNPq
Prosul. Professor Marcos R.S. Borges was partially
supported by a grant from the Secretaria de Estado de
Educación y Universidades of the Spanish Government.
The work of Professor José A. Pino was partially
supported by a grant from Fondecyt (Chile) No. 1040952.

References

[1] Pinelle, D. and Gutwin, C., "Groupware Walkthrough:
Adding Context to Groupware Usability Evaluation", Proc.
SIGCHI Conference on Human factors in computing systems,
Minneapolis, Minnesota: ACM Press, 2002, pp. 455-462.

[2] Grudin, J. “Groupware and Social Dynamics: Eight
Challenges for Developers”, Communications of the ACM 37
(1), January 1994, p. 92-105.
[3] Pinelle, D., Gutwin, C. and Greenberg, S., "Task Analysis for
Groupware Usability Evaluation: Modeling Shared-Workspace
Tasks with the Mechanics of Collaboration," ACM Transactions
on Computer-Human Interaction 10 (4), pp. 281-311, 2003.
[4] Steves, M., Morse, E., Gutwin, C. and Greenberg, S. "A
Comparison of Usage Evaluation and Inspection Methods for
Assessing Groupware Usability", Proc. GROUP'01, Boulder,
CO, September, 2001. ACM Press, pp. 125-134.
[5] Card, S., Moran, T. and Newell, A., The Psychology of
Human-Computer Interaction. Hillsdale, NJ: Lawrance Elrbaum,
1983.
[6] Kieras, D., “A guide to GOMS model usability evaluation
using NGOMSL”. University of Michigan, 1996.
[7] John B. and Kieras, D., "Using GOMS for User Interface
Design and Evaluation: Which Technique?" ACM Transactions
on Computer-Human Interaction 3 (4), 1996.
[8] Baker, K., Greenberg, S. and Gutwin, C., "Empirical
Development of a Heuristic Evaluation Methodology for Shared
Workspace Groupware," in Proc. ACM Conference on Computer
Supported Cooperative Work. New Orleans, 2002, pp. 96-105.
[9] Kieras, D., Wood, S. and Meyer, D., "Predictive Engineering
Models Based on the EPIC Architecture for a Multimodal High-
Performance Human-Computer Interaction Task," ACM
Transactions on Computer-Human Interaction, vol. 4, no. 3, pp.
230-275, 1997.
[10] Ritter, F., Baxter, G., Jones, G. and Young, R., "Supporting
Cognitive Models as Users," ACM Transactions on Computer-
Human Interaction, vol. 7, no. 2, pp. 141-173, 2000.
[11] Kieras D. and Santoro, T., "Computational GOMS
Modeling of a Complex Team Task: Lessons Learned." Proc.
Conference on Human Factors in Computing Systems. Vienna,
Austria: ACM Press, 2004, pp. 97-104.
[12] Douglas, S. and Kirkpatrick, A., "Model and
Representation: The Effect of Visual Feedback on Human
Performance in a Color Picker Interface," ACM Transactions on
Graphics, 18 (2), pp. 96-127, 1999.
[13] C. Gutwin, C., Benford, S., Dyck, J., Fraser, M., Vaghi, I.
and Greenhalgh, C., "Revealing Delay in Collaborative
Environments." Proc. Conf. on Human Factors in Computing
Systems. Vienna, Austria: ACM Press, 2004, pp. 503-510.
[14] Dewan P. and Choudhary, R., "Coupling the User Interfaces
of a Multiuser Program," ACM Transactions on Computer-
Human Interaction, vol. 2, no. 1, pp. 1-39, 1995.
[15] Antunes, P., Borges, M.R.S. and Pino, J.A., Carriço, L., “On
the Analysis of Groupware Usability Using Annotated GOMS”,
Technical Report DI-FCUL-TR-04-18, Dept. of Informatics,
University of Lisboa, Portugal, 2004.
[16] Haag, S., Raja, M. and L. Schkade, “Quality Function
Deployment”, Communications of the ACM 39 (1), pp. 41-49,
1996.
[17] Zultner, R., "TQM for Technical Teams", Communications
of the ACM 38 (10), 1993.
[18] Herzwurm, G., Schockert, S., Dowie, U. and Breidung, M.,
"Requirements Engineering for Mobile Business Applications."
Proc. First International Conference on Mobile Business. Athens,
Greece, 2002.
[19] Cornell, P., Building a Real-Time Data Server in Excel
2002, Microsoft Corporation, 2001.

 6

	1. Introduction
	2. GOMS and Groupware
	3. An Example
	4. Conclusions
	References

