

A Collaborative Framework for Unexpected Exception

Handling

Hernâni Mourão
1*

, and Pedro Antunes
2

1 Escola Superior de Ciências Empresariais, Instituto Politécnico de Setúbal, Campus do IPS

– Estefanilha, 2914-503 Setúbal, Portugal, and

LASIGE (Laboratory of Large Scale Information Systems)

hmourao@esce.ips.pt
2 Faculdade de Ciências, Universidade de Lisboa, Departamento de Informática, Campo

Grande – Edifício C5, 1749-016 Lisboa, Portugal, and

LASIGE (Laboratory of Large Scale Information Systems)

paa@di.fc.ul.pt

Abstract. This paper proposes a collaborative framework handling unexpected

exceptions in Workflow Management Systems (WfMS). Unexpected excep-

tions correspond to unpredicted situations for which the system can not suggest

any solutions. We introduce the notion that exception recovery is a collabora-

tive problem solving activity that should be addressed through an intertwined

play between several actors performing two types of tasks: (1) diagnosing

situations; and (2) planning recovery actions. We propose a set of dimensions to

classify the exceptional situations and their relations to recovery strategies. We

also discuss the importance of monitoring recovery actions within the scope of

diagnosis tasks. The proposed solution is implemented through a dedicated

workflow.

1. Introduction

The work processes carried out by organizations in their daily operations have been

identified to belong to a continuum ranging from totally unstructured to completely

structured [33]. The majority of the available organizational information systems fall

close to both sides of the spectrum boundaries [33]. In particular, traditional WfMS

fall into the highly structured boundary, usually supporting organizational processes

through the execution of work models. In the context of Schmidt’s work [32], work

models play the role of scripts in formal organizational structures and have a norma-

tive engagement. Closer to the other end of the spectrum limits, Suchman [35] pro-

poses the notion of maps, which position and guide actors in a space of available

actions, providing environmental information necessary to decision making but

avoiding a normative trait.

* The author is deeply grateful to Ulm’s University group for their friendship and scientific

support during his staying. Their sharing of ideas and great field experience on Workflows

was very important to this work.

paa
Lecture Notes in Computer Science, vol. 3706, pp. 168-183. Groupware: Design, Implementation, and Use. H. Fuks, S. Lukosch and A. Salgado, Eds. Heidelberg, Springer-Verlag.

To support the various organizational needs, WfMS should cope with the whole

spectrum of structured and unstructured activities. This requirement has been

identified by Ellis and Nutt [18], when they realize that WfMS must be flexible to

succeed. Also, Abbot and Sarin [1], based on empirical evidence, claim it is necessary

to integrate procedural and nonprocedural work in WfMS. They define nonprocedural

work as “unchoreographed interactions between people.”

In the WfMS community nonprocedural work has been designated “exception

handling,” encompassing the set of actions aiming to react to a kind of event that is

out of the scope of the work model. Exceptions either can not be predicted during the

design phase or, although being predictable, are deliberately excluded from the work

model to reduce complexity [6; 10; 14; 24; 31]. The Eder and Liebhart’s [14]

classification of expected and unexpected exceptions has been widely accepted, since

it enables a division between the exceptions that can be predicted in the design phase

from those that can not. In our work, we advocate a novel approach to exception

classification, assuming a continuum from expected to unexpected exceptions.

This paper is structured in the following way. We start by revising the notion of

completeness in an exception handling WfMS. Then, we present a framework to deal

with the above mentioned dichotomy: maintain model-based work whenever possible

and change to a kind of map guidance whenever the scope is outside the limits under

which the work models were designed [2]. A set of guidance mechanisms is proposed

to support users dealing with unexpected exceptions, delivered in the form of

contextual information about the affected processes. As Bernstein [5] states, emergent

actions must be sustained by context information as actors dealing with these

environments become overloaded with information.

Our solution is based on a previous developed exception handling workflow [25].

In the present work we expand the exception handling workflow with three functions

[31]: detection, diagnosis, and recovery. Most importantly, the recovery phase is now

intertwined with the diagnosis phase, as we came to realize that a proper diagnosis is

an iterative process requiring harvesting contextual information and collaboration

between users.

We also classify exception handling strategies and relate them with exceptional

situations. Finally, we present and discuss the implementation details, illustrate the

framework usage with an example, and finish with the conclusions and future work.

2. Revising the Completeness Requirement

To be complete, an exception handling system should consent users to carry out

recovery activities without restrictions, i.e., the flexibility of the exception handling

system should be on par with the flexibility actors have on their daily activities when

working without system control. Several impacts of this definition should be taken

into consideration.

This definition is based on the notion that people tend to solve their problems with

all the available means. If any system restrictions are imposed to the users’ primary

objective of reaching a solution, they will overcome the system [21; 34].

The consequences of this open perspective on WfMS are profound. The common

restrictions to ad hoc model changes, based on structural and dynamic properties,

must therefore be relaxed. We believe that these restrictions are only applicable if one

wants to keep the execution under the specified work models. However, if the

objective is, for instance, to graciously abort a workflow instance, no consistency

check is necessary. Even further, if the user decides to implement a recovery action

that deliberately inserts structural conflicts in the work model, s/he should be advised

on potential problems but allowed to carry out that action.

On the other hand, users should not be restricted to the services provided by the

exception handling system, since they will use everything needed to overcome the

situation. The challenge is to implement a comprehensive set of services that may

reduce the user’s needs to handle exceptions outside the system scope. The

framework described in this paper integrates such services while being open to the

organizational environment. Thus, some exception handling activities will be partially

outside the WfMS scope. The framework integrates environmental information about

external activities, thus guiding actors in the course of actions, but will not assume

control of those activities. These environmental monitoring tasks collect information

necessary to plan the recovery actions or monitor the evolution of actions

implemented out of the framework’s scope.

3. Related Work and Scope of the Framework

The main appointed reasons for the lack of flexibility in current WfMS are: 1)

complex work models where only predictable events are foreseen (expected

exceptions, see below) [6; 7; 11]; 2) inability applying model changes to already

running instances [17; 28; 36]; 3) difficulties applying ad hoc changes to cope with

very small model variations [28; 36]; 4) tight coupling between modeling and

enactment [19; 23]; and 5) formal models currently adopted to represent work are

inadequate to flexibility support [13].

Various approaches to flexibility can be found in the literature, as different authors

understand differently the properties a WfMS should exhibit to effectively deal with

office work. We identify two parallel research streams [20]: meta-model and

open-point. Meta-model approaches take into major consideration structural and

dynamic constraints to model adaptations, while open-point approaches rely on the

users’ abilities to assure that no inconsistencies are inserted in the system.

The meta-model approaches fundamentally address expected exceptions, coded in

special constructs and invoked whenever a predefined exceptional situation is

detected [6; 10; 11; 14] – e.g., Event Condition Action (ECA) rules. Several

techniques, such as exception mining [10; 22], case base reasoning [24],

conversational case base reasoning [37], and knowledge bases [12] have been

proposed to expand the system flexibility handling exceptions. If we consider a

continuum from expected exceptions to completely unexpected exceptions, all these

systems handle events falling close to expected exceptions limits of the spectrum.

On the meta-model approaches to address unexpected exceptions, we find several

solutions [7; 17; 26; 36]. The most important distinction from the previous set, is that

these solutions support dynamic changes and ad hoc interventions.

Regarding the open-point approaches in more detail, we find interactive enactment

[23] and flexible enactment [19]. These approaches assume work models are

incompletely specified, allowing users to interactively adapt them, e.g., inserting

tasks. This increases the degree of freedom on the user side to cope with deviations

between the work models and the real world, although in a more structured way than

a totally open-point intervention would afford. In any case, users will be able to insert

unidentified inconsistencies, and possibly put the WfMS at risk [20], considering that

no dynamic or structural checks are made.

Like Agostini and De Michelis [2], we agree with both research streams delineated

above and posit that a WfMS should offer both advantages: being able to work under

model guidance and adopt an open-point behavior when model guidance is not

applicable. However, after open-point operations, the system should support users

bringing instances back to model control, while identifying potential flow and data

inconsistencies. A complete discussion of the mechanisms necessary to bring the

system under model control is out of the scope of the present paper. It is though

important to mention that these mechanisms are highly constrained by the meta-model

assumptions. We point to [29] on this issue.

Also studying the integration between meta-model and open-point approaches,

Bernstein [5] proposes a stepwise solution with four stages. The handling activities

incrementally progress from totally unspecified to totally specified control. Contrary

to this solution, which relies on AI techniques to support the incremental steps, our

approach relies on user collaboration.

In summary, our main focus is on exceptions that can not be handled in an

automatic way, i.e., can not be dealt by any of the solutions enlarging the original

notion of expected exceptions (thus moving close to the unexpected limit). We

assume that users should be able to flexibly move the system behavior from totally

defined to unstructured processes, where open-point operations are carried out while

meta-model assumptions are used to check system coherence. This will enable the

adoption of the best strategy to the exceptional situation and facilitates the

identification of user inserted inconsistencies. Finally, the system should also support

the user to identify the necessary actions to bring the system back to a coherent state.

4. Exceptions Handling Framework

We distinguish three functions in exception handling [12; 31]:

• exception detection

• situation diagnosis

• exception recovery actions

Exception detection has been extensively studied in previous works [6; 10; 11; 31;

25]. Detection can be manual or automatic. A detailed description of the automatic

detection techniques is out of the scope of this paper as it is focused on user

perspective. We assume that an exception detection component is tightly integrated in

the workflow engine, covering the most common situations, such as data, workflow,

and temporal events, non-compliance events and application events. Later in this

section we will discuss the integration of the detection component. We distinguish

manual and automatic detection as they behave differently from user’s perspective.

We will rather focus on the other two functions. In our framework we advocate an

intertwined play between diagnosis and recovery until the exception is resolved. That

is to say, the diagnosis is not considered to be complete on the first approach but

rather, through an iterative process where different actors may collaboratively

contribute to the solution. We should also stress that both the exceptional situation

and perception of the situation may change along this iterative process, as new

information is made available. As an example concerning a clinical process, a doctor

may decide to insert a new task to collect information on the patient’s status and

display this information to everyone involved. Also, if the clinical conditions of the

patient change, the diagnosis regarding the exceptional situation may also change and

some new objectives and tasks may arise.

After diagnosis, users carry out recovery actions. The open nature of the

framework indicates that the recovery actions do not always run in the inner system

context, and thus some linking mechanism is necessary to bring environmental

information to the system. This issue will be addressed later in more detail.

Besides the detection, diagnosis and recovery functions, we identify a new function

addressing monitoring actions necessary to control the progress of the whole

exception handling process. These monitoring actions allow users to collect up to date

information related to running instances and tasks. Considering again the open nature

of the framework, these monitoring actions may also bring environmental information

to the system, e.g., establishing a link to a web site with traffic information may help

solving the exception of a truck being stuck on a traffic jam. In other cases monitoring

actions may require more sophisticated links to external services, e.g., invoking an

existing tool to calculate the minimum impact of a machine break down in a lot

manufacturing facility. As shown in Figure 1, the exception handling cycle considers

monitoring actions running in parallel with recovery actions.

Fig. 1. Exception Handling Cycle

Ellis and Keddara [16] state that a process change is itself a process that can be

modeled. Therefore, like Sadik [31], we claim that it is better to cope with unexpected

exceptions in work models using a work model. In our framework, the occurrence of

an exception starts an exception handling workflow governed according to the

exception handling cycle. The workflow is described in the Implementation section.

Figure 2 illustrates the three different levels of the exception handling framework.

Dashed lines represent information flows whereas uninterrupted lines represent

control flows. We illustrate the WfMS at the bottom level, including the engine and

all running tasks. The mid level represents the system components supporting the

exception handling activities.

The top level concerns the users, focused on the two main exception handling

functions: diagnosis and recovery/monitoring. The diagnosis and recovery/monitoring

functions are carried out by the involved actors with support from the components

available in the level below.

Our discussion of completeness in this context requires users not be restricted to

the system. Therefore, the “External facilities” component shown in Figure 2

represents what is not under control of the exception handling workflow.

Fig. 2. Operational levels of the exception handling framework

We differentiate two types of activities carried out by the “External facilities”: 1)

information gathering, collaboration and decision making; and 2) recovery actions.

The former group is related to external communication, coordination, collaboration

and decision making tools (e.g., meetings, telephone conversations, or operations

research techniques). The later group addresses the external recovery actions

necessary to resolve the exception. It is our aim that, for any activity executed outside

the scope of the exception handling workflow, some environmental information is

inserted in the system for monitoring purposes.

The system interfaces are also identified in Figure 2. Interface 1 (Int. 1) interfaces

with the WfMS, while interface 2 (Int. 2 and Int 2’) interfaces with “External

facilities” and implements manual exception signaling. Interface 2 is split to maintain

simplicity. Interface 1 is used to collect information about the WfMS status, to

implement low level recovery actions (launch/suspend tasks, etc), and to signal

automatically detected exceptions. Through the connection from interface 2 to

“External facilities” environmental information about the operations carried outside

the framework’s scope is collected.

The components Exception Description, WF Interventions, and Collaboration

support will be explained later in the Implementation section. Exception detection is

also represented in the figure. Manual detected exceptions are inserted by an operator

and represented by the uninterrupted line connected to interface 2’ on the top left side

whereas automatically detection is implemented by the “Automatic exception

detection” component located close to the engine. The component uses interface 1 to

signal the events to the framework and is located close to the engine because it shares

the organization workflow scope.

4.1. Diagnosis

The diagnosis process is mostly dependent on a detailed and accurate assessment of

the exceptional event. Using previous classifications [8; 9; 30] and some new added

characteristics, we classify exceptional situations using the orthogonal dimensions:

1. Scope – process specific when only a small set of instances is affected; or cross

specific when a large set or different sets of instances are affected. At least one

instance must always be associated to the exception;

2. Detection – automatic if the exception is automatically detected by the system, or

manually if the exception is manually triggered;

3. Event type – data events related to violation of data rules; temporal events when

a predefined timestamp occurs; workflow events identify special situations at the

beginning or ending of tasks or processes, e.g., infinite loops; external events are

notified by agents or applications external to the WfMS. The assessment of the

event type is mandatory, because it directly impacts the handling phase;

4. Impact to organizational goals – high, if the particular situation has an important

effect on the overall organizational goals; medium, if not critical; and low, when

the organizational goals are not a concern;

5. Organizational impact – employee, when only a limited number of employees in

the same department are affected by the exception; group, when more than one

department is affected; and organizational, when the overall organization is

affected. A responsible person must always be associated to the exception;

6. Difference to the organizational rules – established exceptions occur when rules

exist in the organization to handle the event but the right ones cannot be found;

otherwise exceptions occur when the organization has rules to handle the normal

event but they do not apply completely to the particular case; and true exceptions

occur when the organization has no rules to handle the event;

7. Complexity of the solution – easy, when the optimal solution can be easily

obtained in an acceptable time; hard, when the optimal solution is not obtainable

within an acceptable time. In this dimension, complexity is not defined as the

overall complexity of the handling procedure, but rather an estimation of the

possibility to define a cost function based on the available data. Whenever such a

function exists, this dimension provides an estimate of the complexity degree to

calculate the optimal solution;

8. Reaction time – quick, when the reaction to the exception must be as fast as

possible; relaxed, when the reaction time is not too critical but some decisions

must be taken within a time frame imposed by the instance(s); long, when the

reaction time is not critical. This information is mandatory;

9. Time frame to achieve solution – quick, when the situation is expected to be

resolved in few working units, normally minutes or hours; relaxed, when the time

frame is more relaxed, although being a parameter to be taken into consideration,

normally measured in working days; and long when time is not a critical issue.

Even though some estimates in these dimensions might be available when the event is

detected, they can be redefined by users as more information is collected. The old

values are kept to maintain an exception history. On the other hand, only the

dimensions affected instances, responsible person (organizational impact), event type,

and reaction time are mandatory. The user must only insert the most relevant

information for the particular situation. This will release the user from inserting

information not relevant to handle the concrete situation.

4.2. Recovery

We identified the following dimensions to classify recovery processes:

1. Objective of the intervention – further division presented below;

2. Required type of collaboration – synchronous and asynchronous;

3. Required collaboration level – one person solves the problem; several persons

solve the situation in an asynchronous coordinated mode; and several persons solve

the situation in a synchronous collaborative mode;

4. External monitoring requirements – there is either enough information to achieve

the best solution or additional information must be collected from the environment;

5. Tools to determine the best solution – the solution does not require external

decision aids, or there is a need of advanced support to achieve the best solution.

This information is associated to every exception raised. It must be emphasized that,

likewise the information necessary to classify the situation, these values may change

over time as more information about the exception is obtained. An exception history

is kept in the system to be consulted by the involved users.

The objective of the intervention is further divided into [3; 10; 15; 27; 31]:

• Abort – further divided in: hard, compensate some tasks, and compensate all tasks;

• Decrease completion time to meet deadline;

• Recover from a system failure condition and replace the system in automatic mode;

• Recover from a task failure and place the system back in automatic mode;

• Recover to achieve the lowest penalty possible, i.e., the exception already impacted

negatively on the organizational goals and the objective is to minimize the impact;

• Jump forward to a task in the work model;

• Repeat a previous task that was not executed in the desired way;

• Jump backwards in the work model and compensate some already executed tasks;

• Delay this task. This objective can be useful to release some resources necessary to

increase the execution time of another process/instance;

• React to environmental changes. This normally requires a process change.

This classification affords linking the recovery process with a specific set of recovery

tasks available at the system level. The required type of collaboration expresses how

the collaboration support component will interconnect the persons involved in the

recovery process. We differentiate between two types of collaboration: synchronous

and asynchronous. In synchronous collaboration all of the persons involved intervene

at the same time, while in asynchronous collaboration the persons involved are not

engaged in the process at the same time.

Concerning the required collaboration level, one as to be aware of concurrent

changes made to work models. When ad hoc changes are applied in an asynchronous

coordinated mode, every change is seen as an independent change and the resulting

work model results from the composition of previous changes. Therefore, the

structural and dynamic checks are made on the instance with respect to this new

model. However, in the case of concurrent ad hoc changes carried in an asynchronous

collaborative mode, the work of Rinderle [28] must be taken into consideration

because actions carried out by different users without any agreement –

asynchronously – may conflict (if they overlap on the same part of the model).

External monitoring requirements specify if environmental information is

necessary to resolve the exception. The need to collect information within the system

has already been identified by Basil et al [4]. In this approach we suggest that the

recovery process may as well require collecting environmental information, from

outside the system, e.g. generate an interface to display traffic information because a

truck is stuck on a traffic jam.

The item tools to calculate the best solution identifies any additional tools

necessary to calculate the best recovery solution. This affords linking the framework

with external tools supporting the decision process.

5. Relationships Between Diagnosis and Recovery

Some relationships can be established empirically between the diagnosis of the

situation and recovery strategies. Although some field trials should be carried out to

validate the relations they seem very intuitive and easy to explain. These relations can

be used as information to feed a decision support system that helps users on the

selection of the most appropriate strategy given a concrete scenario.

We start by identifying the dimensions of the recovery strategy that do not depend

on the classification; and the dimensions of the classification that do not have a clear

impact on the recovery strategy. Then, the remaining relationships and respective

consequences are explored.

On the side of recovery strategies, the objective of the intervention is determined

by the external environment and does not depend of any characterization of the

situation. It is related to the organizational goals regarding a particular event.

The dimensions scope, detection, and event type do not have any direct impact on

the recovery strategy. Detection is important to know how the event was identified.

Since similar events can be automatic or manually detected, this is of minor

importance in determining the recovery strategy. The scope dimension determines the

number of instances affected by the situation but does not affect the recovery strategy.

The same strategy can be applied to all instances, or different strategies may be

applied to different instances. Finally, the event type dimension does not have a clear

relationship to the recovery strategy. For instance, a timeout does not imply that the

reaction time should be quick. However, the reaction time dimension can be used to

increase the context awareness of a particular timed event. For instance, a timeout

may be classified as critical in some situations and not critical in others.

Table 1 summarizes the identified relationships. The rows refer to diagnosis and

the columns to recovery. The table shows two types of relationships: the first letter is

the relation between the diagnosis and the need to adopt a particular recovery strategy

(if the impact is high then there is a strong impact from the diagnosis row on the

necessity to use the recovery strategy in the column); and the second letter shows the

relation between the diagnosis and the particular type of recovery strategy within the

class (if the impact is high there is a strong relation between the diagnosis row and the

type of recovery strategy within the column). This means that in a particular situation,

even though the diagnosis might not indicate the necessity to use a particular recovery

strategy, if the users decide to use it then the chosen recovery strategy might depend

on the diagnosis. E.g., the time dimension on the diagnosis does not affect the

decision to use a collaboration type (L on the first letter), but if the users adopt a

collaboration type then the time dimension has an impact on the type of collaboration

type to choose (H on the second letter).

Table 1. Relation between event classification and handling strategies

 Collaboration
type

Collaboration
level

Ext.
monitoring

Tools to best
solution

Time L/H L/H L/H L/H

Goals impact H/L L/L M/H M/H

Organizational impact H/L H/L L/L L/L

Difference to
organizational rules H/L L/L M/H M/H

Complexity L/L L/L M/H H/H

Legend – L – low; M – medium; H – high

As the time associated with the exception is usually an independent factor, we start by

discussing time relations. Also, it is important to note that time restrictions have a

strong impact on the way people deal with problems. We have defined two

dimensions related with time: reaction time and time frame to achieve solution. The

former is important to specify how the person responsible should be informed about

an exception. Then, upon starting the diagnosis phase, that person can define the time

frame to achieve solution in a different way than reaction time: e.g., some contention

action was implemented but the final solution can be implemented in a more relaxed

time frame. Therefore, once the parameter time frame to achieve solution is defined, it

will have a stronger effect on the decision process than the reaction time. The time

row in the table reflects this effect and is obtained from these two dimensions.

One should not expect any impact from the time dimension on the usage of any

collaboration type, i.e., for any value of time nothing can be concluded about

collaboration among users (L on the first letter). However, if the time is quick and the

user wants to use collaboration the synchronous type should be the choice. On the

other hand, if the time is not quick, one can expect that an asynchronous collaboration

type may be the choice (H on the second letter). This shows low impact from the time

dimension on whether any collaboration type should be used, but a strong relationship

between the time dimension and the collaboration type to use. The relation is

therefore “L/H”.

The relationship between time and cooperation level is similar, since time does not

affect the usage of any collaboration level, but if one is to be used then asynchronous

cooperation level should be the choice on situations that require fast responses as

autonomous actors react faster. Synchronicity increases the delay on recovery actions.

Similar relationships are found between time and monitoring, and between time

and tools. The need for monitoring environmental information and using external

tools to calculate the best solution depends on a particular case and not on time; but if

they are needed the particular ones to choose will be restricted by the time factor.

The organizational goals dimension has implications on the required collaboration

type, since events with high impact should involve the user(s) responsible for the

task(s) and their supervisors, but the type of collaboration is not imposed. The

required collaboration level is not affected in any sense by the organizational impact

as there is not an indication to use any of the identified collaboration levels due to the

type of organizational impact. Even further, the collaboration level to choose is not

influenced by the goals impact. There are situations with high (low) organizational

goals impact that can be solved with only one user implementing recovery actions and

others where more than one person is necessary.

Regarding monitoring and tools, even though the necessity to use them depends on

the particular context, the usage of these mechanisms should deserve more attention

on situations with high impact on the organizational goals. The value in the table M/H

reflects these considerations where the M is used to signal that the concrete scenario

has a higher relation, but the impact of the organizational goals dimension should also

be taken into consideration. On the other hand, if the impact on the organization goals

is high special care should be placed on the monitoring actions and on the tools to use.

The organizational impact has a strong relationship with the collaboration level

and type. However, there is a small relationship with the type within these

dimensions. The relationship with monitoring requirements and tools is also low.

On the difference to organizational rules dimension, it is expected that more users

are involved when there are rules but the right ones can not be found, or when there

are no rules in the organization to handle the event. The involvement of more users is

important to find the right rules or define new ones. There is a high relation with the

selection of a collaboration type, but no restriction is imposed. The monitoring

requirements and the usage of tools are expected to increase in situations that differ

from normal procedures, and the type of adopted mechanism will also depend on the

degree of difference. No relation is established with the collaboration type.

Finally, for situations where it is possible to use a tool to calculate the best solution

and the complexity is high, the primer relevance is made on the external monitoring

requirements. As in previous situations, it is expected that external monitoring

requirements are mainly influenced by the concrete situation, so we expect a medium

relation. Nevertheless, if one is to be chosen, special care must be taken about the

right one. In these situations, as it is easily justifiable, there is high relation between

usage and type of tools. No relation is established with the collaboration type and

collaboration level, as it is expected that the solution, even though complex, can be

calculated by only one actor.

6. Implementation

Figure 3 represents the proposed exception handling work model, an extended version

of our previous work [25], where two new branches were inserted addressing external

monitoring actions and collaboration mechanisms; and some minor changes were

done to the collaboration component. Further details regarding association of

instances and edit exception classification can be consulted in the cited paper.

In the present work we are not concerned with the specific implementation details,

in particular about the WfMS engine or model language used. Our main focus is how

exception handling is supported by the proposed framework.

Fig. 3. Exception handling workflow

The collaboration support component supports users specifically collaborating within

the scope of an exceptional event. The tasks implemented by the component (see

figure 3) enable the definition of a new responsible, involve more actors, and

implement the collaboration mechanism. The collaborate task in the model can be

synchronous or asynchronous where at any instant the users can choose the type to

use. When asynchronous collaboration is being used any involved actor can send a

message to any or all of the colleagues using a developed interface. The company

email system is used to inform the user that s/he should check the workflow system.

Synchronous collaboration support depends on the application domain and

environment as it can be implemented by a phone conversation, chat over a computer

or even face-to-face conversation. In both cases the exchanged information is stored

using the exception history component. If it is not possible to store the conversation

the users should insert the conclusions and any special comment. Further

developments of collaborative components will be subject to future research.

The wf interventions component is implemented using two branches: implement

recovery actions; and insert monitoring tasks. Recovery actions are a set of atomic

interventions that can be carried out on the specific workflow engine, e.g., suspend an

instance or insert a task in the original model.

The monitoring branch affords users to insert monitoring tasks that store exception

relevant information in exception history. Since this information is chronologically

stored, the user may monitor the system evolution. Even further, if external

environmental information or tools are available, the user may store links, e.g., a link

to traffic cameras available through the internet, which may be used to diagnose the

situation on a truck that is stuck on a traffic jam.

The detection of a new exception situation is represented in the figure by the first

two parallel branches on the top of the figure representing system and manual

detection. These tasks will insert all the mandatory information. As mentioned before,

a responsible person must always be associated to the exception and will execute the

next task “Edit exception info” where the most important information related to the

exception is inserted. This task assures that the responsible person is informed on the

situation and initiates the exception handling procedure.

The person responsible may then execute any of the actions specified in the six

branches of the exception handling workflow. Let us assume that a user decides to

involve three more actors in the exceptional event. Then, using the collaboration

component (email or chat) s/he informs the other actors that there is an exception to

be resolved. The diagnosis phase proceeds using the collaboration component, so the

other actors share their views of the present situation. Finally, they decide to insert

two monitoring actions in the work model, and two of them will be responsible for the

follow up. Once any special event regarding these monitoring actions is triggered, the

group is informed and the recovery action may proceed using the execute recovery

action branch. The process is repeated until the exceptional situation is overcome.

7. Example

During an operation, the patient’s heart monitoring machine breaks down. As soon as

the machine breaks, one nurse connects the patient to an available, but less reliable

machine, and continues monitoring the patient’s data. Meanwhile, she manually

instantiates the exception recovery workflow and assigns her name as the person

responsible. The time frame to reach a solution is set as quick, a brief description of

the event is inserted and she joins two other persons to the exception handling

procedure: one person will try to fix the machine (maintenance operator) and a

technical assistant will try to find another compatible machine for backup. As the time

frame is set as quick, both departments will be informed by a flashing light and a buzz

sound on their coordination room. The respective department coordinators will look at

their computers and find this exceptional situation to handle. They will initiate their

own recovery tasks and assign them to an employee in their department (using a form

requiring the name, the urgency, and a manually inserted description of the task).

As the maintenance employee will go inside the operations room, face-to-face

collaboration with the nurse is assured. However, if the situation in the operations

room changes, the technical assistant should be informed. A collaborative reporting

task is generated where both the technical assistant coordinator and the nurse can read

and write information. Both of them write any status changes. If the maintenance

operator fixes the machine, the nurse writes this information and the technical

coordinator informs the employee. If, on the other hand, a compatible machine is

found, the technical assistant informs his coordinator, who writes down the predicted

available time. If the solution is approved by the nurse the maintenance operator will

start to prepare the replacement. When the technical assistant arrives with the

machine, the maintenance operator replaces it and the exception is closed.

However, one can imagine a dramatic case where all the machines are allocated to

patients and someone responsible has to decide whether they can be removed or not.

The technical assistant coordinator informs the nurse and they decide to involve the

doctor responsible for the area. They insert a new task in the work model supplying

information to the doctor with a high priority: again, a signaling system should be

available so the doctor is quickly informed. The doctor analyses the task description

and decides, given the patients’ situations, if she has enough information to make a

decision. If not, she initiates a chat session with the nurse (new task). Let us assume

the doctor decides to remove a machine from one of her patients but only after a new

nurse is assigned to monitor this patient. She therefore affects another instance to the

exception (the instance associated to this new patient) and inserts three new tasks:

find a new nurse, remove the machine, and replace the machine once the operation is

finished (note that the first and second tasks are in parallel to the original operation

sequence, while the last is placed after the operation is finished). The first is assigned

to the nurse coordinator and the other two to the technical assistant coordinator. Once

the new nurse is monitoring the patient, the first task is completed and the technical

assistant can take the machine to the operations room. After the operation is finished,

the task to move the machine back to the patient is ready to be executed. Only after

the machine is replaced in its original position the exception is completed.

8. Conclusions

The major concern addressed by our framework is the support to unexpected

exceptions, defined as situations that can not be handled in an automatic way because

the system does not have information about them, nor can infer such information from

previous analogous situations. Under these circumstances, collaborative user

involvement is crucial to determine the most appropriate solution.

Our analysis highlighted a fundamental system requirement: maintain task

execution under model guidance during normal operation and change to unstructured

behavior when an unexpected exception occurs, supporting users giving the control

back to model guidance after the exceptional situation is overcome.

We developed an exception handling process to support this behavior, comprising

collaborative diagnosis, recovery and monitoring tasks. Furthermore, we analyzed in

detail the characteristics and relationships between the diagnosis and recovery tasks.

The diagnosis task is based on a new classification of unexpected exceptions

proposed in this paper. Several dimensions characterizing the recovery tasks, as well

as relationships with the classification of unexpected exceptions are proposed as well.

The resulting framework helps users collaborating to devise appropriate exception

handling strategies for unexpected situations.

9. Bibliography

1. Abbott, K.R., and Sarin, S.K., 1994. Experiences with workflow management:

issues for the next generation. Proc. of the 1994 ACM Conference on CSCW.

Chapel Hill, North Carolina, United States, pp. 113-120.

2. Agostini, A., and De Michelis, G., 2000. A light workflow management system

using simple process models. CSCW, 9(3): 335-363.

3. Agostini, A., De Michelis, G., and Loregian, M., 2003. Undo in Workflow

Management Systems. BPM 2003. Springer-Verlag, Netherlands, pp. 321-335.

4. Bassil, S., Rinderle, S., Keller, R., Kropf, P., and Reichert, M., 2005. Preserving

the Context of Interrupted Business Process Activities. 7th ICEIS 2005. USA.

5. Bernstein, A., 2000. How can cooperative work tools support dynamic group

process? bridging the specificity frontier. CSCW '00: Proceedings of the 2000

ACM Conference on CSCW. ACM Press, Philadelphia, pp. 279-288.

6. Casati, F., 1998. Models, Semantics, and Formal Methods for the Design of

Workflows and their Exceptions. PhD Thesis, Politecnico di Milano.

7. Casati, F., Ceri, S., Pernici, B., and Pozzi, G., 1996. Workflow Evolution. Data

and Knowledge Engineering, 24(3): 211-238.

8. Casati, F., and Pozzi, G., 1999. Modelling exceptional behaviors in commercial

workflow management systems. Proc. IFCIS, International Conference on

CoopIS, CoopIS '99. IEEE International, Edinburgh, UK, pp. 127-138.

9. Chiu, D.K., 2000. Exception Handling in an Object-oriented Workflow

Management System. PhD Thesis, Hong Kong Univ. of Science and Technology.

10. Chiu, D.K., Li, Q., and Karlapalem, K., 2001. WEB Interface-Driven

Cooperative Exception Handling in ADOME Workflow Management System.

Information Systems, 26(2): 93-120. Elsevier Publishers.

11. Dayal, U., Hsu, M., and Ladin, R., 1990. Organizing Long-Running Activities

with Triggers and Transactions. SIGMOD'90. NJ, USA.

12. Dellarocas, C., and Klein, M., 1998. A Knowledge-based approach for handling

exceptions in business processes. WITS'98. Helsinki, Finland.

13. Dourish, P., Holmes, J., MacLean, A., Marqvardsen, P., and Zbyslaw, A., 1996.

Freeflow: mediating between representation and action in workflow systems.

Proc. of the 1996 ACM Conference on CSCW. ACM Press, New York.

14. Eder, J., and Liebhart, W., 1995. The Workflow Activity Model WAMO. Int.

Conf. on Cooperative Information Systems. Vienna, Austria.

15. Eder, J., and Liebhart, W., 1996. Workflow Recovery. 1st IFCIS Intl. Conf. on

Cooperative Information Systems (CoopIS'96). IEEE, Belgium, pp. 124 - 134.

16. Ellis, C., and Keddara, K., 2000. A Workflow Change is a Workflow. In: W.D.

van der Aalst, J. Oberweis (Editor), Business Process Management: Models,

Techniques, and Empirical Studies. Springer-Verlag, pp. 201-217.

17. Ellis, C., Keddara, K., and Rozenberg, G., 1995. Dynamic change within

workflow systems. Organizational Computing Systems., Milpitas, CA, USA.

18. Ellis, C., and Nutt, G.J., 1993. Modeling and enactement of workflow systems.

Application and Theory of Petri Nets. Springer-Verlag, Illinois, USA, pp. 1-16.

19. Faustmann, G., 2000. Configuration for Adaptation - A Human-centered

Approach to Flexible Workflow Enactment. CSCW, 9(3): 413-434.

20. Han, Y., Sheth, A.P., and Bussler, C., 1998. A Taxonomy of Adaptive Workflow

Management. Conf. on CSCW - Workshop - Towards Adaptive Workflow

Systems. Seattle, WA, USA.

21. Hayes, N., 2000. Work-arounds and Boundary Crossing in a High Tech

Optronics Company: The Role of Co-operative Workflow Technologies. CSCW,

9(3): 435-455.

22. Hwang, S.Y., Ho, S.F., and Tang, J., 1999. Mining Exception Instances to

Facilitate Workflow Exception Handling. 6th Int. Conf. on Database Systems for

Advanced Applications. Hsinchu, Taiwan.

23. Jorgensen, H.D., 2001. Interaction as Framework for Flexible Workflow

Modelling. Group '01. ACM Press, Boulder, Colorado, USA.

24. Luo, Z., 2001. Knowledge sharing, Coordinated Exception Handling, and

Intelligent Problem Solving for Cross-Organizational Business Processes. PhD

Thesis, Dep. of Computer Sciences, University of Georgia.

25. Mourão, H.R., and Antunes, P., 2004. Exception Handling Through a Workflow.

CoopIS 2004. Springer-Verlag, Agia Napa, Cyprus.

26. Reichert, M., and Dadam, P., 1998. ADEPTflex - Supporting Dynamic Changes

of Workflows Without Loosing Control. Journal of Intelligent Information

Systems, 10(2): 93-129.

27. Reichert, M., Dadam, P., and Bauer, T., 2003. Dealing with Forward and

Backward Jumps in Workflow Management Systems. Software and Systems

Modeling, 2(1): 37-58. Springer-Verlag.

28. Rinderle, S., 2004. Schema Evolution in Process Management Systems. PhD

Thesis, University of Ulm.

29. Rinderle, S., Reichert, M., and Dadam, P., 2003. Evaluation of Correctness

Criteria for Dynamic Workflow Changes. BPM '03. Netherlands, pp. 41-57.

30. Saastamoinen, H., 1995. On the Handling of Exceptions in Information Systems.

PhD Thesis, University of Jyväskylä.

31. Sadiq, S.W., 2000. On Capturing Exceptions in Workflow Process Models. Proc.

of the 4th Int. Conference on Business Information Systems. Poznan, Poland.

32. Schmidt, K., 1997. Of maps and scripts - the status of formal constructs in

cooperative work. GROUP '97: Proc. of the Int. ACM SIGGROUP Conf. on

Supporting Group Work: The Integration Challenge. United States, pp. 138-147.

33. Sheth, A.P., Georgakopoulos, D., Joosten, S.M., et al, 1996. Report from the NSF

workshop on workflow and process automation in information systems. ACM

SIGMOD Record, 25(4): 55-67. ACM Press.

34. Strong, D.M., and Miller, S.M., 1995. Exceptions and Exception Handling in

Computerized Information Systems. ACM Trans. on Information Systems, 13(2).

35. Suchman, L.A., 1987. Plans and Situated Actions. MIT Press.

36. van der Aalst, W., and Basten, T., 2002. Inheritance of workflows: an approach

to tackling problems related to change. Theoretical Computer Science, 270(1).

37. van der Aalst, W., Basten, T., Verbeek, H., Verkoulen, P., and Voorhoeve, M.,

1999. Adaptive Workflow: On the interplay between flexibility and support.

Proceedings of the 1
st
 ICEIS. Setúbal, Portugal, pp. 353-360.

38. Weber, B., Wild, W., and Breu, R., 2004. CBRFlow: Enabling Adaptive

Workflow Management through Conversational Case-Based Reasoning.

European Cof. on Case-Based Reasoning (ECCBR'04). Madrid, Spain.

