
 

 

 
 

On the Analysis of Groupware Usability Using 
Annotated GOMS 

 
PEDRO ANTUNES 

MARCOS R.S. BORGES 
JOSE A. PINO 

LUÍS CARRIÇO 
 

 DI-FCUL TR–04–18 
 
 

 

DEZEMBRO 2004 

 

Departamento de Informática 
Faculdade de Ciências da Universidade de Lisboa 

Campo Grande, 1749-016 Lisboa 
Portugal  

 

 

 

 

 

 
Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files are stored in PDF, with 
the report number as filename. Alternatively, reports are available by post from the above address. 

 



On the Analysis of Groupware Usability Using Annotated GOMS 

Pedro Antunes 1 

Marcos R. S. Borges 2 

Jose A. Pino 3 

Luís Carriço 4 

1,4 Department of Informatics, Faculty of Sciences of the University of Lisboa 

Edificio C6, Piso 3, Campo Grande,  

1749-016 Lisboa, Portugal 

1paa@di.fc.ul.pt  4lmc@di.fc.ul.pt 

2 Graduate Program in Informatics – NCE & IM – Federal University of Rio de 

Janeiro (UFRJ) 

Caixa Postal 2324, 

20001-970 Rio de Janeiro, Brazil 

mborges@nce.ufrj.br 

3 Department of Computer Science – Universidad de Chile 

Blanco Encalada 2120, Piso 3, 

Santiago 6511224, Chile 

jpino@dcc.uchile.cl 

Abstract 

GOMS is a well-known model that has been successfully used in predicting the 

performance of human-computer interaction, identifying usability problems and 

improving user-interface design. The focus of GOMS is on the individual user, 

however. This explains why it has no significant impact in the groupware context. 

This paper discusses the applicability of GOMS in the groupware context. We 

analyzed the impact of groupware in the cognitive architecture of GOMS in order to 

1 



accomplish this goal. The obtained results led us to introduce an annotation scheme in 

GOMS reflecting several pre and post conditions necessary to describe how 

operations realized by collaborating users are interrelated in GOMS descriptions. We 

discuss the applicability of Annotated GOMS by studying a collaborative tool for 

software engineering requirements negotiation. This work contributes to the 

collaboration systems field with an innovative way to analyze groupware usability.  

Keywords: GOMS, Groupware Usability, Groupware Cognitive Architecture. 

1 Introduction 

Collaborative systems place many challenges to usability evaluation (Ivory & Hearst, 

2001), motivated by the number of users required to participate in the evaluation 

process and the required control over many technological factors and other variables 

related to the group, task and context (see, e.g., (Fjermestad & Hiltz, 1999)). The 

complexity and cost of usability evaluation may be impeding the emergence of the 

best groupware designs, highly usable and useful to individuals, work groups and 

organizations. 

A collection of discount methods has recently emerged with the purpose of 

reducing the complexity and cost of groupware usability evaluation (Baker, et al., 

2002). Many of these methods resulted from the adaptation of discount methods used 

to evaluate single-user software (singleware), such as groupware heuristic evaluation 

(Baker, et al., 2002), groupware usability inspection (Steves, et al., 2001), groupware 

walkthrough (Pinelle & Gutwin, 2002) and scenario based evaluation (Haynes, et al., 

2004). 

GOMS (Goals, Operations, Methods and Selection Rules (Card, et al., 1983)) 

and its family of models, such as GOMSL (e.g., (Kieras, 1999)) also fall in the 

category of discount methods for singleware evaluation, by providing an analytic 

2 



approach that can be applied without the participation of users and even without a 

prototype being developed (John, 1995). This approach has been successfully brought 

to operation in several ways, to predict usability, optimize user interaction or 

benchmark various design solutions (John & Kieras, 1996). GOMS can also be used 

to make predictions about human costs of using systems or training users (John, 

1995).  

GOMS addresses singleware interactions, i.e. one user interacting with one 

device (John, 1995). It is possible to model multiple user interactions with one device 

using GOMS, as reported by Kieras and Santoro (2004). However, we realized that 

such an approach is limited to coordination support and not beneficial for groupware 

designers, since the focus is on an individual basis whereas groupware designers are 

mostly interested in the collaborative context. 

We argue the GOMS approach may also be added to the existing collection of 

discount groupware usability evaluation methods, offering additional contributions to 

groupware design that are not covered by the other methods. The potential advantages 

of this approach emerge from some fundamental characteristics of GOMS. We would 

like to emphasize the following ones:  

• One important argument in favor of using GOMS is that it affords studying 

the usability of alternative design solutions in an analytical way (Kieras et 

al., 1997). This approach may save design time and effort by reducing the 

number of iterations and empirical tests necessary to revise and improve an 

initial design (Khalifa, 1998).  

• Another important feature of GOMS is that it is founded on a cognitive 

architecture providing insights about the assumed mechanisms and 

3 



capabilities of the human processing system (Kieras, 1999). These insights 

may be instrumental to designers aiming to develop good groupware tools.  

• GOMS is applied to situations where users accomplish tasks that they 

already master (John, 1995). This excludes using GOMS to analyze 

exploratory and creativity scenarios, decision making processes, as well as 

situations where users must learn how to use the system. Although the 

scope is apparently more limited when compared to the other approaches, 

we note that it may be used to analyze the fine-grained details of 

collaboration required, for instance, when using shared workspaces for 

intensive collaboration. 

• GOMS offers an engineering solution with quantitative estimates of human 

performance (John & Kieras, 1996). We conjecture some of these 

quantitative estimates may be extrapolated to groupware interaction.  

Recognizing the strong theoretical and practical foundations of GOMS, we 

were interested in studying the applicability of GOMS to the collaborative context. 

We restricted the study to the specific context of concerted work, i.e. people working 

together in a concerted effort towards a shared goal (Nunamaker, et al., 1997); and to 

the situation where work is exclusively accomplished through groupware support. 

The GOMS cognitive architecture (user and device) and building blocks 

(goals, operators, methods and selections rules) approximate human-computer 

interaction at a low level of detail. We investigated which specializations could be 

made in the cognitive architecture and building blocks to reflect the particular 

characteristics of groupware in GOMS. This endeavor is explained in Section 3. Then, 

we defined an annotation scheme to describe how operations realized by collaborating 

users are interrelated in GOMS descriptions. This annotation scheme is explained in 

4 



Section 4. We proceed with an in-depth analysis of a groupware tool to demonstrate 

the applicability of the annotation scheme in Section 5. Specifically, we analyze a 

collaborative tool for software engineering requirements negotiation and discuss the 

insights that Annotated GOMS brings to groupware designers. We discuss the 

benefits and limitations of the approach in Section 6. Section 7 contains the 

conclusions of the research. 

2 Related Work 

We begin with an overview of several discount usability methods specifically 

developed for groupware. The first one is groupware walkthrough (Pinelle & Gutwin, 

2002), a method based on cognitive walkthrough (Polson, et al., 1992). The approach 

starts with a task description using a set of small-scale group activities named 

“mechanics of collaboration” (Steves, et al., 2001). When these task descriptions are 

available, a set of expert evaluators review the tasks and analyze how the shared 

workspace supports the users’ goals. The major adaptations of cognitive walkthrough 

to the groupware context resulted from the observation that single-user actions should 

be filtered out from task descriptions, while groupware walkthrough should model 

multiple concurrent tasks and multiple choices to accomplish typical tasks in 

collaborative work (Pinelle & Gutwin, 2002). 

Another discount usability method is heuristic evaluation (Baker, et al., 2002). 

This method, adapted from the heuristic evaluation methodology (Nielsen, 1992), is 

based on a set of experts evaluating the compliance of a shared workspace with a list 

of heuristics. As with the groupware walkthrough approach, the list of heuristics is 

founded on the mechanics of collaboration.  

Considering that both heuristic evaluation and groupware walkthrough are 

dependent on the quality of the task analysis, Pinelle et al. (2003) proposed CUA 

5 



(Collaboration Usability Analysis), an improved version of the mechanics of 

collaboration. It is interesting to compare CUA with GOMS. Like GOMS, CUA 

analyzes tasks using a hierarchical model. An important difference between these two 

approaches lies in the level of task decomposition. The CUA lowest granularity 

defines mechanical collaborative actions that users perform in shared workspaces, 

such as writing a message or obtaining a resource from the shared workspace. GOMS 

decomposes tasks at a much lower level of detail, e.g., single keystrokes. However, 

this level of detail afforded by GOMS is unrelated to collaboration, and increasing the 

level will naturally approximate both approaches in terms of the insights they may 

provide to groupware designers.   

Furthermore, we argue there are additional differences that may justify 

applying GOMS to the groupware context. One of them is that GOMS is founded on a 

cognitive architecture that has no counterpart in CUA. We hypothesize that a 

cognitive architecture adapted to groupware may provide additional insights about 

how users interact with groupware. In particular, GOMS goes beyond external actions 

(what users do) and also address internal actions (what users think), which may 

provide additional insights about task conditions involved in collaborative work. 

Focusing on task conditions affords designers to think about how to develop shared 

artifacts that allow users to easily grasp the design logic behind groupware.  

Another difference to ponder is that GOMS addresses tasks which are well-

known and mastered by the users (John, 1995). We hypothesize the design of 

intensive collaborative tools - where the designer may find necessary to optimize the 

effort applied by users in low-level collaborative activities - may benefit from the 

GOMS approach.  

6 



 Scenario based evaluation (Haynes et al., 2004) is another groupware discount 

usability method. It was derived from scenario based design (Carrol, 2000) and 

consists of collecting detailed narratives of users’ interactions with a system when 

performing a specific task. Each scenario identifies an actor, setting, task goals and 

claims. The claims are subsequently analyzed and related to system features in order 

to identify their positive and negative aspects. We regard this approach as unrelated to 

GOMS, since it does not offer an analytical approach.  

Groupware task analysis (van der Veer & van Welie, 2000) is a method 

intended to generate task descriptions of current and future situations involving 

groupware use. These task descriptions are similar to the work models defined by the 

contextual design approach (Beyer & Holtzblatt, 1998), well know in the HCI field. 

Although a usability framework is proposed to afford early evaluation of groupware 

designs, this method is more oriented towards design than to evaluation. 

We will now overview the application of GOMS in the groupware context. 

Min et al. (1999) developed DGOMS (Distributed GOMS) as an extension of GOMS 

to the group level of analysis. The approach regards group work at a high level of 

detail, as a group task that can be successively decomposed in group subtasks until 

individual tasks can be identified. A new type of operator, called communication 

operator, is defined to coordinate individual tasks executed in parallel. Therefore, this 

approach does not address concerted but coordinated work. As mentioned above, we 

focus our study on concerted work in this paper.  

Kieras and Santoro (2004) applied GOMS to a complex task executed by a 

team of users. The task involved several users with individual roles monitoring a 

display and executing actions in a coordinated way. Coordination was supported by a 

7 



shared radio communication channel. As in the previous case, this approach does not 

address concerted work. 

 3 The GOMS Architectural Basis and its Relation to Groupware  

In general, the GOMS family of models has been associated with the Human 

Processor Model (Card, et al., 1983), which represents human information processing 

capabilities using perceptual, motor and cognitive processors. However, significant 

architectural differences are identified when considering individual models. For 

instance, KLM (Card, et al., 1980) uses a serial-stage architecture, while EPIC 

(Kieras, et al., 1997) addresses multimodal and parallel human activities. In spite of 

these differences, a common characteristic to the whole GOMS family of models is 

that it is singleware (Ritter, et al., 2000), i.e., it assumes that one single user interacts 

with a physical interface comprising several input and output devices.  

Figure 1 depicts this singleware architecture based on the EPIC architecture 

(some components considered not relevant to our purposes, like the production 

memory, are absent). We also illustrate that there is one conventional flow of 

information in the architecture (Kieras, et al., 1997), from the cognitive processor to 

the motor processors, input devices, output devices, perceptual processors and then 

back to the cognitive processor.  

According to some authors (Kieras & Santoro, 2004), the architecture depicted 

in Figure 1 applies to groupware in a very transparent way: in order to model a team 

of users, one can model each individual interaction between the user and the physical 

interface; and assume that (1) the physical interface is shared by multiple users and 

(2) the users will deploy procedures and strategies to communicate and coordinate 

their individual actions. Thus, according to this view, groupware usage will be 

reflected in some conventional flows of information, spanning several users, which 

8 



still may be described using the conventional production rules and representations. 

Kieras and Santoro (2004) studied the performance of a team of operators connected 

via speech over an intercom channel in this way. 

The problem, however, is that this approach does not reflect two fundamental 

issues with groupware: (1) the focus and granularity should not remain on the 

interactions between user and physical interface but should significantly change to 

focus on the interactions between users, mediated by the physical interface; and (2) 

with groupware, the conventional flows of information are considerably changed to 

reflect concerted work. From our point of view, we have to re-analyze the users’ 

cognitive processing of the conventional flows of information in order to address 

these groupware issues. We must also discuss these flows in relation to multi-user 

interactions.  

Let us start with the singleware architecture. In that context, we may 

characterize the conventional flow of information in two categories: feedback and 

feedforward. The first category corresponds to a flow of information initiated by the 

user, for which the physical interface conveys feedback information to make the user 

aware of the executed operations (Douglas & Kirkpatrick, 1999; Wensveen, et al., 

2004). The second category concerns the delivery of feedforward information, 

initiated by the physical interface, to make the user aware of the afforded action 

possibilities.  

Now, when we regard groupware, some additional categories may have to be 

considered. We will analyze three different categories: explicit communication, 

feedthrough and back-channel feedback. The explicit communication category, as 

defined by Pinelle et al. (2003), addresses information produced by one user and 

explicitly intended to be received by other users. This situation can be modeled as a 

9 



physical device capable to multiplex information from input devices to several output 

devices (Kieras & Santoro, 2004). The immediate impact on the model shown in 

Figure 1 is that we now have to explicitly consider additional users connected to the 

physical device. 

The feedthrough category concerns implicit information delivered to several 

users reporting actions executed by one user (Hill & Gutwin, 2003). This flow of 

information is initiated by the physical interface and is directed towards the other 

users. A simple form of generating feedthrough information consists of multiplexing 

feedback information to several users. Sophisticated schemes may consider delivering 

less information by manipulating the granularity and timing associated to the 

operations executed by the groupware system (Gutwin & Greenberg, 1999). 

The notion of feedthrough has an important impact on task modeling for 

several reasons. The first one is that feedthrough is essential to provide awareness 

about the other users and construct a context for collaboration. We can regard the 

processing of awareness information in a specialized perceptual processor, capable of 

processing sensory information about who, what, when, how, where are the other 

users operating in the system. We will call awareness processor to this specialized 

perceptual processor. We may also model the delivery of feedthrough to the 

awareness processor using a specialized output device, which we will name 

awareness output device. Another feature of the awareness processor is that it does 

not only afford users to construct a perceptual image of the collaborative context, but 

it allows users to perceive the role and limitations of the physical interface as a 

mediator. This is particularly relevant when Internet is being used to convey 

feedthrough, causing feedthrough delays which are significantly higher and 

unpredictable than feedback delays (Gutwin, et al., 2004).  

10 



An additional reason for analyzing the impact of feedthrough on task modeling 

is related to another particular characteristic of groupware: it affords users to loose the 

link between executed operations and awareness – a situation that is called loosely 

coupled (Dewan & Choudhary, 1995). Two types of control are generally supported 

by groupware in a loosely coupled situation: (1) the user may get awareness 

information on a per-object demand basis, e.g. by moving the focus of interest; or (2) 

the user specifies filters that restrict awareness to some selected objects and types of 

events. In both cases this situation requires some cognitive activities from the user to 

discriminate and control awareness information, which can be modeled as one 

specialized motor processor, called coupling processor. A specialized input device 

will be devoted to control awareness information in the physical interface.  

Finally, the back-channel feedback category concerns information flows 

initiated by one user and directed towards another user to facilitate communication 

(Rajan, et al., 2001). No significant content is delivered through back-channel 

feedback, because it does not reflect cogitation from the user. That is the main 

difference between explicit communication and back-channel feedback. We can 

model this type of activity as a motor activity executed by the coupling processor in 

response to some perceived inputs. The outputs produced by this motor activity will 

be delivered to other users through the awareness output device. 

In Figure 2 we illustrate the obtained groupware architecture. In summary, our 

interpretation of the GOMS architecture, taking the groupware context in 

consideration, essentially consists of introducing the awareness processor and output 

device, handling awareness information from the other users operating in the system; 

and the coupling processor and input device, responsible for controlling the amount of 

awareness information delivered to one user.  

11 



Observe that this groupware architecture does not imply any modifications to 

the GOMS architecture, providing instead a contextualization adequate to a 

specialized application area, namely groupware.  Finally, note this groupware 

architecture does not address face-to-face situations where users, besides 

collaborating though groupware, may exploit other verbal, visual and body 

communication channels.  

4 Modeling Groupware - Annotated GOMS 

This section discusses how to model groupware using the proposed architecture. We 

start the discussion with a canonical example where user A moves an object to a 

shared workspace and user B moves that object to another destination. The following 

model describes this goal using NGOMSL (Kieras, 1996) and the singleware 

architecture. 

Method for goal: Move object between users. 
Step 1. Accomplish goal: Move object to shared space. 
Step 2. Locate object on screen. 
Step 3. Accomplish goal: Move object to private space. 
Step 4. Return with goal accomplished. 
 
Method for goal: Move object to destination. 
Step 1. Accomplish goal: Pick object.  
Step 2. Point to destination. 
Step 3. Accomplish goal: Release object.  
Step 4. Return with goal accomplished. 
 
Method for goal: Pick object. 
Step 1. Determine position of object. 
Step 2. Point to object. 
Step 3. Hold down mouse button.  
Step 4. Return with goal accomplished. 
 
Method for goal: Release object. 
Step 1. Verify that object is at destination. 
Step 2. Release mouse button. 
Step 3. Return with goal accomplished. 

Observe that step 1 in the “move object between users” method refers to a goal 

of user A, while steps 2 and 3 refer to user B. Furthermore, step 2 in the “pick object” 

method is associated to feedforward, while the step 1 in the “release object” method is 

related to feedback. 

12 



We will however focus on feedthrough to discuss this example. Feedthrough 

information is fundamentally associated to step 2 of the “move object between users” 

method, where user B becomes aware that the object from user A was moved to the 

shared workspace. Unfortunately, the description of step 2 does not convey any 

explanation about what type of operation generated feedthrough, something that, from 

a groupware point of view, is needed to fully understand the interaction between users 

A and B. Furthermore, depending on the implementation of the feedthrough 

mechanism, the physical device may simply produce outputs when the object is 

released on the shared workspace, or, alternatively, produce intermediate outputs 

while the object is being dragged by the pointer (as in a telepointer (Dyck, et al., 

2004)). Moreover, this type of information cannot be represented with additional 

operators, since it is related to the device functionality and not to the user. Therefore, 

we propose to add the notion of pre and post conditions to method descriptions to 

resolve these problems.  This is shown below in the redesigned “move object between 

users” method. 

Method for goal: Move object between users. 
Step 1. Move object to shared space. (A) 
Step 2. Move object from shared space. (B) 
Step 3 Return with goal accomplished. 
 
Method for goal: Move object to shared space. (A) 
Step 1. Accomplish goal: Move object to destination.  object 

released 
Step 2. Return with goal accomplished. 

 
Method for goal: Move object from shared space. (B) 
Step 1. Locate object on screen.  object released 
Step 2. Accomplish goal: Move object to destination.  
Step 3. Return with goal accomplished. 

The “move object to shared space” method has now a post-condition annotated 

in step 1, denoted by the  symbol, which states that feedthrough is produced as a 

consequence of the action executed in that step. The post-condition also refers to the 

type of feedthrough produced, e.g. in this case the information that an object was 

released in the shared workspace. The “move object from shared space” method has 

13 



been annotated with a pre-condition, denoted by the  symbol. This pre-condition 

states that the accomplishment of step 1 by the user involves processing the 

corresponding feedthrough information. 

The basic feature of pre and post conditions is they are notational mechanisms, 

helping the designer identifying the context of collaboration without interfering with 

the GOMS description. Of course, this approach affords various levels of detail. For 

instance, in this canonical example we have not described the details of the “locate 

object on screen” method. One design alternative could involve user B waiting and 

then processing the received feedthrough information with the awareness processor. 

Another design alternative could involve a shared workspace operated in a loosely 

coupled way, where user B would obtain feedthrough selectively, by moving a 

viewport over the shared workspace.  

The following description affords that functionality for user B. Once again, we 

use a post condition to establish a relation of causality between moving the viewport 

to a specific region and receiving feedthrough. 

Method for goal: Move focus on shared space. (B) 
Step 1. Adjust coupling device.  [area] 
Step 2. Return with goal accomplished. 
 
Method for goal: Move object from shared space. (B) 
Step 1. Locate object on screen.  [area] object released  
Step 2. Accomplish goal: Move object to destination. 
Step 3. Return with goal accomplished. 

We would like to point out that while a high level of detail affords the designer 

studying how users establish collaboration patterns, the low level of detail also affords 

studying in detail and optimizing the support provided by shared workspaces. This 

optimization may in fact be a central issue when developing groupware for intensive 

collaboration. 

Finally, we observe the “move object to destination” method, as well as the 

other methods defined below that one, are irrelevant to explain the collaboration 

14 



between A and B in this specification. As we previously mentioned, this is because 

feedback and feedforward are associated to singleware but not to groupware. 

In summary, in this example we were able to describe the collaboration between 

users A and B by applying a very simple annotation scheme to NGOMSL: using pre 

and post conditions to describe how the operations realized by users A and B are 

interrelated. We will now discuss in detail the syntax of pre and post conditions 

shown in Table 1. 

We organize pre and post conditions in three major categories: feedthrough, 

back-channel feedback and coupling. The first category includes conditions associated 

to basic awareness information about the shared workspace (who is in the group, 

what, when, how and where are they), object manipulations (sharing, acquiring, 

releasing, etc); and mouse, key or text events (affording more fine grained awareness 

information than object manipulations). The second category considers three types of 

prompts used to keep conversations on track: auditory, verbal and visual. Finally, the 

third category addresses the user control over feedthrough delivery, which may be 

coupled to selected areas of the shared workspace, selected objects, events or time 

periods. 

Finally, we may also specify several operators introduced by the groupware 

perspective (shown in Table 2). These are not new operators in terms of what is 

specified for DGOMSL, but are rather specializations of existing operators, something 

that is natural considering that both the awareness and coupling processors are 

specializations of perceptual and motor processors as well. For instance, related to the 

awareness processor, we specialize the verify operator to the different types of 

feedthrough being delivered to users. Concerning the coupling processor, we added a 

specialization of the “move cursor” and “point to” primitive operators, called move 

15 



focus, which encapsulates the set of operations necessary to control coupling, e.g. 

moving a viewport. The prompt operator, which is also a specialization of the 

primitive motor operators, is dedicated to produce back-channel information 

necessary to control the dialogue between users.  

5 Case Study 

The following case study is intended to discuss in detail the approach developed 

above. The case is centered in the design of a groupware tool for software quality 

assessment.  

The tool implements the Software Quality Function Deployment (SQFD (Haag 

et al., 1996; Zultner, 1993)) methodology as the basic approach for evaluating 

software quality. According to this methodology, software quality is assessed by 

inspecting a matrix of correlations between a list of technical product specifications 

and a list of customer requirements. Each cell in this matrix indicates the strength of 

the relationship between a product specification and a customer requirement using the 

following numbers: 0, 1, 3 and 9 (Haag et al., 1996). 

The approach requires obtaining a consensus view from the customers about the 

software quality achieved in several milestones established along the software 

development process. However, this endeavor requires intensive work from the 

customers, considering they may have conflicting views, the matrix tends to be large 

and the cell values may have to be individually negotiated. The objective of this 

groupware tool is to facilitate this negotiation process, supporting several negotiation 

mechanisms in a same-time, different-place mode. 

Figure 3 shows our implementation of the SQFD, using a replicated MS Excel 

spreadsheet, where the rows represent the customers’ requirements and the product 

specifications appear in the columns. The example shown in Figure 3 was taken from 

16 



Herzwurm, et al. (2002). Note that in Figure 3, besides the (0, 1, 3, 9) values, a cell 

may also be empty and have the following symbols: (?, F, L). These symbols mean 

respectively that the cell is being negotiated by several customers (?), one customer 

has a firm position about a correlation (F), and one  customer locked the negotiation 

of a cell (L). 

Of course, customers may have several attitudes towards the negotiation of a 

cell, manifested with suggestions of alternative values, compromising attitudes, and 

strong positions as well. At the limit, a customer may even decide to block or stall the 

negotiation process. Therefore, the groupware tool must support this variety of 

attitudes.  

The negotiation process is supported by two main components:  the MEG client 

and the MEG server. The MEG client/server use TCP/IP and RTD (Cornell, 2001) 

technology to synchronize replicated MS Excel spreadsheets, residing in the users’ 

personal computers, with a centralized data repository. In this architecture, the users 

do not input cell values directly in the Excel spreadsheets, but in the MEG client. The 

MEG client interacts with the local replica of the MS Excel spreadsheets and with the 

MEG server. The MEG server is then responsible for synchronizing the several MEG 

clients, while RTD is used to synchronize the data on the repository with the Excel 

spreadsheets. In fact, our case study will focus mostly on the MEG client interface 

and therefore we do not provide additional details on the system architecture and 

functionality.  

The MEG client implements several user interfaces. Two of them are shown in 

Figures 4 and 5. In general terms, the MEG user interface is divided in two major 

areas: the “current situation” area displays the overall status of the negotiation 

process, reminding about the cell that is currently selected in the SQFD spreadsheet 

17 



and showing the different positions taken by all negotiators; while the area below the 

“current situation” allows the user to express his/her individual position. Both the top 

and bottom areas change according to the status of the negotiation protocol. 

The “current situation” area displays the following information: 

• Information about the elements correlated by the cell: “Write emails fast 

AND in reply include original text for comments” 

• Information about the first value specified by a user for the cell: “Main 

issue: value 1.” 

• The positions of other users in favor or against this value: “Position: In 

favor” and “Position: Against.” These positions are automatically 

defined by the system, based on the individual values assigned to the cell 

by the users (i.e., if the initial value in a cell is 0 and a user afterwards 

sets a value of 3, then there is one position against the initial value). 

• Arguments supporting the positions of users and their corresponding 

categories: “Security (Risk based arguments).” The arguments and 

categories are optional and selected from a fixed list defined when the 

tool is configured for a specific organization. 

Both the spreadsheet and MEG briefly explained above can be regarded as 

shared workspaces. We will now describe the functionality of these shared 

workspaces using Annotated GOMS. First, let us specify the following objects that 

exist in the shared workspaces: 

cell  One cell of the SQFD spreadsheet for which a value must be agreed by the customers 
value  The correlation attributed to the cell 
issues  The current status of the negotiation of one cell that is displayed to all negotiators 
positions  The component of issues that lists the positions in favor or against the value currently 

in cell 
arguments  The component of positions that lists the arguments supporting a position 

18 



The following method describes how a user operates the spreadsheet. The 

method consists of analyzing the spreadsheet and deciding to propose or to negotiate 

the value of a cell using MEG. The proposal occurs when the cell is empty (no symbol 

displayed), while the negotiation occurs when the cell has already a value set (the later 

case is illustrated in Figure 4, where one user selected 1 and another user is selecting 

3). The task is considered finished when the user accepts all values in the spreadsheet.  

Method for goal: Negotiate spreadsheet. 
Step 1. Accomplish goal: Select cell. 
Step 2. Accomplish goal: Analyze situation of cell.  
Step 3. Decide: If want to propose value, then 
  Accomplish goal: Propose initial value. 
Step 4. Decide: If want to negotiate value, then  
  Accomplish goal: Negotiate value. 
Step 5. Decide: If agreement on all cells, return with goal accomplished. 
Step 6. Goto 1. 

Next we present two auxiliary methods dedicated to handle cell values. The first 

one is intended to analyze the cell situation, which includes analyzing feedthrough 

information about activities of others on the same cell in the spreadsheet. The second 

method describes proposing the initial value for an empty cell with MEG. This initial 

value has a special treatment by the users, because all of the subsequently proposed 

values will be presented by the system as being against or in favor of the first one. 

Method for goal: Analyze situation of cell. 
Step 1. Verify cell is empty or 0,1,3,9,?,F,L.  cell modified, cell released, firm released 
Step 2. Return with goal accomplished. 
 
Method for goal: Propose initial value. 
Step 1. Accomplish goal: Select value from 0,1,3,9.  cell modified 
Step 2. Return with goal accomplished. 

The following method is dedicated to negotiate a cell value using MEG. The 

user has several alternative actions while negotiating a value for the cell. Note in step 

11 that the system may request a confirmation from the user about the current value of 

the cell. If all users agree, then the negotiation is considered finished for that cell. 

 

19 



Method for goal: Negotiate value. 
Step 1. Accomplish goal: Analyze current situation.  
Step 2. Decide: If do nothing, return with goal accomplished.  
Step 3. Decide: If want other values, then 
  Accomplish goal: Propose alternative values. 
Step 4. Decide: If insist on a value, then  
  Accomplish goal: Support proposed value. 
Step 5. Decide: If agree with others, then  
  Accomplish goal: Withdraw proposed values. 
Step 6. Decide: If change opinion, then  
  Accomplish goal: Change proposed values. 
Step 7. Decide: If want to block, then  
  Accomplish goal: Block negotiation. 
Step 8. Decide: If want to unblock, then  
  Accomplish goal: Unblock negotiation. 
Step 9. Decide: If want firm position, then  
  Accomplish goal: Firm position. 
Step 10. Decide: If remove firm position, then 
  Accomplish goal: Remove firm positions. 
Step 11. Decide: If system is requesting value confirmation, then 
 Accomplish goal: Confirm value. 
 Else goto 1. 
Step 12. Return with goal accomplished. 

Next, we specify several methods related to the analysis of the “current 

situation.” This operation may cascade through several issues, positions and 

arguments. Observe that MEG does not associate the identity of the users to the 

positions (except for the user’s own position, as shown in Figure 4). 

Method for goal: Analyze current situation. 
Step 1. Accomplish goal: Analyze correlation. 
Step 2. Decide: If do not open issues, return with goal accomplished. 
Step 3. Verify issues modified.  issues modified 
Step 4. Accomplish goal: Analyze issues.  
Step 5. Return with goal accomplished. 
 
Method for goal: Analyze correlation. 
Step 1. Verify user requirement and product specification. 
Step 2. Return with goal accomplished. 
 
Method for goal: Analyze issues. 
Step 1. Accomplish goal: Analyze issue. 
Step 2. Decide: If another issue, goto 1. 
Step 3. Return with goal accomplished. 
 
Method for goal: Analyze issue. 
Step 1. Select issue. 
Step 2. Verify lock acquired or firm acquired.  cell acquired, firm acquired 
Step 3. Verify value proposed for cell. 
Step 4. Verify positions modified.  positions modified 
Step 5. Decide: If do not open positions, return with goal accomplished.  
Step 6. Accomplish goal: Analyze positions.  
Step 7. Return with goal accomplished. 
 
Method for goal: Analyze positions. 

20 



Step 1. Accomplish goal: Analyze position. 
Step 2. Decide: If another position, goto 1. 
Step 3. Return with goal accomplished. 
 
Method for goal: Analyze position. 
Step 1. Select position. 
Step 2. Verify in favor or against.  
Step 3. Verify arguments modified.  arguments modified 
Step 4. Decide: If do not open arguments, return with goal accomplished.  
Step 5. Accomplish goal: Analyze arguments.  
Step 6. Return with goal accomplished. 
 
Method for goal: Analyze arguments. 
Step 1. Accomplish goal: Analyze argument. 
Step 2. Decide: If another argument, goto 1. 
Step 3. Return with goal accomplished. 
 
Method for goal: Analyze argument. 
Step 1. Select argument. 
Step 2. Verify argument type and description.  
Step 3. Return with goal accomplished. 

The following methods describe the situation when the cell already has a value 

and the user decides to add, support, withdraw or change values using MEG. Observe 

that all these actions produce feedthrough information necessary to notify other users 

about changes in the “current situation.”  

Method for goal: Propose alternative values. 
Step 1. Accomplish goal: Select value from 0,1,3,9.  positions modified  
Step 2. Decide: If select another value, goto 1.  
Step 3. Return with goal accomplished. 
 
Method for goal: Support proposed value. 
Step 1. Accomplish goal: Select argument from list.  arguments modified 
Step 2. Decide: If select another argument, goto 1.  
Step 3. Return with goal accomplished. 
 
Method for goal: Withdraw values. 
Step 1. Accomplish goal: Unselect value from 0,1,3,9.  issues, positions modified 
Step 2. Decide: If unselect another value, goto 1. 
Step 3. Return with goal accomplished. 
 
Method for goal: Change proposed values. 
Step 1. Accomplish goal: Propose alternative values. 
Step 2. Accomplish goal: Withdraw values.    
Step 3. Return with goal accomplished. 

Having described the generic usage of the spreadsheet and MEG, we will now 

describe two additions to this functionality. The first one addresses the privilege given 

to a user to block the possibility of reaching a consensus over a cell, a privilege that is 

common in negotiations and used in various ways to increase individual gains.  

21 



Method for goal: Block negotiation. 
Step 1. Accomplish goal: Select “block” option.  cell acquired 
Step 2. Return with goal accomplished. 
 
Method for goal: Unblock negotiation. 
Step 1. Accomplish goal: Unselect “block” option.  cell released 
Step 2. Return with goal accomplished. 

Another functionality supported by MEG is allowing a user to manifest a “firm” 

position about a cell value. In this situation, MEG asks the other users if they agree 

with the firm position, a situation that is shown in Figure 5. If everybody agrees, the 

negotiation of the cell is considered completed; otherwise, the situation is handled 

similarly to a blocking situation. Note that the system turns public the identification of 

a user that manifests a strong position (“JR” in Figure 5).  

Method for goal: Firm position. 
Step 1. Accomplish goal: Select “firm” option.  firm acquired, who 
Step 2. Return with goal accomplished. 
 
Method for goal: Remove firm position. 
Step 1. Accomplish goal: Unselect “firm” option.  firm released 
Step 2. Return with goal accomplished. 
 
Method for goal: Confirm value. 
Step 1. Accomplish goal: Respond “agree” or “not agree”.  cell modified 
Step 2. Return with goal accomplished. 

22 



5.1 Case study Analysis and Obtained Results 

The groupware tool analyzed by this case study provides a good example of what we 

called intensive collaboration, i.e., the whole collaborative task being a repetitive 

collection of smaller collaborative tasks, since users have to analyze and negotiate a 

large number of cell correlations to obtain a general consensus. In order to arrive to a 

successful design solution, we had to make the collaborative tasks around a cell a 

brief and productive experience. Allowing long and painful negotiations over 

individual cells would make this an impossible task1.  

 Thus, an important goal that we had to accomplish was optimizing the MEG 

user interface. This was mostly done by working on the “analyze current situation” 

and “negotiate value” methods. Both of them are complex for several reasons. The 

“analyze current situation” method is complex because it examines how users 

perceive the current situation of a cell, which may already have been subject to a long 

negotiation process and requires the user to recall and go through the correlation, 

issues, positions and arguments. This requires a significant number of verifications 

and decisions, with the corresponding cognitive effort.  

A solution to this problem, suggested by our analysis, consists of decomposing 

the task hierarchically. As the method shows, the designed solution places more 

emphasis on issues (the correlation under negotiation) than on positions (alternative 

proposals), and more on positions than on arguments. This hierarchical approach 

affords to focus on the most important information and thus “conserve” cognitive 

effort. 

The “negotiate value” method is complex because of the high number of 

decisions faced by the user: do nothing, propose, other value, change opinion, etc. Ten 
                                                 
1 These comments are based on a real-world experiment with the tool, considering a “small” SQFD 
matrix with 17 product specifications and 9 user requirements negotiated by two pairs of users.  

23 



decisions were defined in this method. Nevertheless, we preferred to concentrate all 

those decisions on this method to optimize the time spent performing this task.  

Unquestionably another salient characteristic about the results obtained from 

the case study analysis is that they do not focus on collaboration as a process. For 

instance, MEG implements a protocol for handling strong positions with the following 

steps: (1) a user defines a strong position on a value; (2) the other users are informed 

and questioned if they accept or not the proposed value; (3) the users respond; (4) 

MEG collects the responses and, if all agree, then the negotiation of the cell ends, 

otherwise the cell continues under negotiation but blocked by a user. Although this 

process may be inferred by a detailed analysis of the described methods, we argue the 

approach does not make it salient, giving importance to the mediating role of the 

shared workspaces (spreadsheet and MEG) under the influence of such strong 

positions. This approach may be beneficial in several circumstances because 

collaboration supported by groupware is frequently made up of many intermittent and 

scattered activities. This is clearly what is happening with our case study, where users 

are free to move between cells at any time, sometimes simply analyzing them for a 

brief period, other times proposing and negotiating values for a long period. Focusing 

on the high-level details would hamper the analysis of how users may work in parallel 

and organize themselves using shared artifacts.  

Table 3 provides an outline of how to collaborate using the tool in order to 

support the previous argument. The table was constructed in the following way. We 

began by removing all the steps that are not annotated with pre or post conditions 

from the method descriptions. Then, we also removed the methods that do not have 

pre or post conditions, while preserving the hierarchy of methods. Finally, we 

displayed the relationships between the methods handling the same pre and post 

24 



conditions. Table 3 shows that users’ activities are centered in three shared artifacts: 

(1) cells; (2) issues, positions and arguments; and (3) firm positions.  

A consequence of this focus on shared artifacts is that we had from the 

beginning to clearly analyze which artifacts were essential to support group work and 

how they would be used. It was not by chance that we started the case study by 

specifying the various artifacts available in the shared workspaces. The fact is we 

would be unable to explain the approach without them. 

The approach highlights another interesting aspect for the design of 

groupware: uncovering the mental conditions needed to accomplish group work. For 

instance, in the given example, we identified the following mental conditions 

necessary to handle a conflict: insist on a value, agree with others and change opinion. 

Of course, we have not tried to specify how individuals define their negotiation 

strategies. What was interesting to do, from the point of view of a groupware 

designer, was to associate very clear conditions to specific shared artifacts, in such a 

way that users may easily grasp the design logic behind each artifact.  

In summary, the proposed approach allowed us to:  

• Analyze how group work could be organized around shared workspaces and 

artifacts; 

• Analyze the mental conditions required to accomplish work; 

• Study different ways to organize the cognitive effort required by collaborative 

tasks.  

6 Benefits and Limitations 

Annotated GOMS has been proposed for the case of concerted intensive collaborative 

work. Moreover, the model excludes face-to-face work. Thus, using the well-known 

time/space classification of collaborative activities (DeSanctis and Gallupe, 1987), the 

25 



model is applicable to distributed synchronous work. The relevant work situations 

will probably be scheduled or intended, as opposed to opportunistic or spontaneous, 

as classified by Isaacs et al. (1997). The last characterization means interactions are 

planned in advance or, if they are unplanned, then at least people seek out other 

people to work together. 

            The applicability of Annotated GOMS is then restricted to a specific way of 

collaborative working. Nevertheless, it should be noted that in practice, various ways 

of working may occur when people associate themselves to generate a joint product. 

Thus, these people may agree on the basics and then work in parallel, then meet again, 

then do asynchronous joint work, etc. As a consequence, Annotated GOMS may well 

be used to model part of this comprehensive enterprise.  

 The proposed approach affords analyzing in detail the best strategies for 

organizing intensive collaboration, focusing on mental conditions and cognitive effort, 

highlighting possible alternatives for working together. One clear difference between 

singleware and groupware is that in the later case users should not wait for 

feedforward information as they wait for feedback, and thus strategies have to be 

devised to accommodate parallel work; however, these strategies also emphasize the 

need to devise low-level schemes to make users come together from parallel work. 

The Annotated GOMS addresses exactly the blending of these two design concerns. 

Research described in this paper is just a first step in the direction of exploring 

the inspirations provided by GOMS. Certainly one of the most influential 

characteristics of GOMS is that it provides quantifiable estimates of human 

performance, based on experimental measures of time spent by humans executing its 

operators. Experimental measures for the operators proposed for groupware 

interaction remain to be done in the future. 

26 



Another issue that could be further explored concerns the awareness and 

coupling processors and devices associated to groupware. In particular, we would like 

to study how to make awareness output devices more perceptually distinguishable 

from the output devices.  

7 Conclusions 

We proposed a discount method to evaluate groupware usability, called Annotated 

GOMS, which adapts GOMS to the groupware context. Annotated GOMS is based on 

a cognitive architecture that was specialized from a singleware to a groupware 

perspective. This new perspective resolves three problems that are not present in the 

singleware perspective. First, the model addresses the cognitive activities that users 

must perform to maintain context awareness of collaborative activities, specified as 

information about who, what, when, how and where are users working on a shared 

workspace. Second, the cognitive architecture must consider the processors and 

devices necessary to manage that context awareness. Finally, the cognitive 

architecture must afford time, space and coupling conditions that are different from 

the singleware perspective. 

The implications for design raised by this model are twofold. As shown in the 

case study described in the paper, the analysis of collaborative work using Annotated 

GOMS uncovers the mental conditions necessary to accomplish work, allowing the 

designers to specify shared artifacts that ease the users’ grasping the design logic 

behind the tool. Designers may also compare different design options based on the 

analysis of the cognitive workload of a groupware tool. 

Acknowledgments 

This work was partially funded by Fondecyt (Chile) project No. 1040952. 

27 



References 

K. Baker, S. Greenberg, and C. Gutwin, "Empirical Development of a Heuristic 

Evaluation Methodology for Shared Workspace Groupware," in Proceedings 

of the 2002 ACM conference on Computer Supported Cooperative Work. New 

Orleans, 2002, pp. 96-105. 

H. Beyer and K. Holtzblatt, Contextual Design: Defining Customer-Centered 

Systems. Morgan Kaufmann, 1998. 

S. Card, T. Moran, and A. Newell, "The Keystroke-Level Model for User 

Performance Time with Interactive Systems," Communications of the ACM, 

vol. 23, no. 7, pp. 396-410, 1980. 

S. Card, T. Moran, and A. Newell, The Psychology of Human-Computer Interaction. 

Hillsdale, NJ: Lawrance Elrbaum, 1983. 

J. Carrol, Making use: Scenario-based design of human-computer interactions. The 

MIT Press, 2000. 

P. Cornell, Building a Real-Time Data Server in Excel 2002, Microsoft Corporation, 

2001. 

G. DeSanctis and B. Gallupe, “A foundation for the study of Group Decision Support 

Systems”, Management Science 33 (5), pp. 589-609, 1987. 

P. Dewan and R. Choudhary, "Coupling the User Interfaces of a Multiuser Program," 

ACM Transactions on Computer-Human Interaction, vol. 2, no. 1, pp. 1-39, 

1995. 

S. Douglas and A. Kirkpatrick, "Model and Representation: The Effect of Visual 

Feedback on Human Performance in a Color Picker Interface," ACM 

Transactions on Graphics, vol. 18, no. 2, pp. 96-127, 1999. 

28 



J. Dyck, C. Gutwin, S. Subramanian, and C. Fedak, "High-Performance Telepointers." 

Proceedings of the 2004 ACM Conference on Computer Supported 

Cooperative Work. Chicago, Illinois: ACM Press, 2004, pp. 172-181. 

J. Fjermestad and S. Hiltz, "An Assessment of Group Support Systems Experimental 

Research: Methodology and Results," Journal of Management Information 

Systems, vol. 15, no. 3, pp. 7-149, 1999. 

C. Gutwin, S. Benford, J. Dyck, M. Fraser, I. Vaghi, and C. Greenhalgh, "Revealing 

Delay in Collaborative Environments." Proceedings of the 2004 Conference 

on Human Factors in Computing Systems. Vienna, Austria: ACM Press, 2004, 

pp. 503-510. 

C. Gutwin and S. Greenberg, "The Effects of Workspace Awareness Support on the 

Usability of Real-Time Distributed Groupware," ACM Transactions on 

Computer-Human Interaction, vol. 6, no. 3, pp. 243-281, 1999. 

S. Haag, M. Raja, and L. Schkade, “Quality Function Deployment”, Communications 

of the ACM, vol. 39, no. 1, pp. 41-49, 1996. 

S. Haynes, S. Purao, and A. Skattebo, "Situating Evaluation in Scenarios of Use." 

Proceedings of the 2004 ACM Conference on Computer Supported 

Cooperative Work. Chicago, Illinois: ACM Press, 2004, pp. 92-101. 

G. Herzwurm, S. Schockert, U. Dowie, and M. Breidung, "Requirements Engineering 

for Mobile Business Applications." Proceedings of the First International 

Conference on Mobile Business. Athens, Greece, 2002. 

J. Hill and C. Gutwin, "Awareness Support in a Groupware Widget Toolkit." 

Proceedings of the 2003 International ACM SIGGROUP Conference on 

Supporting Group Work. Sanibel Island, Florida: ACM Press, 2003, pp. 258-

267. 

29 



M. Ivory and M. Hearst, "The State of the Art in Automating Usability Evaluation of 

User Interfaces," ACM Computing Surveys, vol. 33, no. 4, pp. 470-516, 2001. 

E. Isaacs, S. Whittacker, D. Frohlich, and B. O’Conaill, “Informal communication re-

examined: new functions for video in supporting opportunistic encounters”. In 

K. Finn, A. Sellen, and S. Wilbur (eds.): Video-Mediated Communication. 

Lawrence Erlbaum, New Jerser, NJ, 1997, pp. 459-485. 

B. John, "Why GOMS?" Interactions, vol. 2, no. 4, pp. 80-89, 1995. 

B. John and D. Kieras, "Using GOMS for User Interface Design and Evaluation: 

Which Technique?" ACM Transactions on Computer-Human Interaction, vol. 

3, no. 4, 1996. 

M. Khalifa, "Computer-Assisted Evaluation of Interface Designs," The DATA BASE 

for Advances in Information Systems, vol. 29, no. 1, pp. 66-881, 1998. 

D. Kieras, A guide to GOMS model usability evaluation using NGOMSL. University 

of Michigan, 1996. 

D. Kieras, A guide to GOMS model usability evaluation using GOMSL and 

GLEAN3. University of Michigan, 1999. 

D. Kieras and T. Santoro, "Computational GOMS Modeling of a Complex Team 

Task: Lessons Learned." Proceedings of the 2004 Conference on Human 

Factors in Computing Systems. Vienna, Austria: ACM Press, 2004, pp. 97-

104. 

D. Kieras, S. Wood, and D. Meyer, "Predictive Engineering Models Based on the 

EPIC Architecture for a Multimodal High-Performance Human-Computer 

Interaction Task," ACM Transactions on Computer-Human Interaction, vol. 4, 

no. 3, pp. 230-275, 1997. 

30 



D. Min, S. Koo, Y. Chung, and B. Kim, "Distributed GOMS: An Extension of GOMS 

to Group Task." IEEE Conference on Systems, Man and Cybernetics. Tokyo, 

Japan, 1999, pp. 720-725. 

J. Nielsen, "Finding Usability Problems Through Heuristic Evaluation," Proceedings 

of the SIGCHI conference on Human factors in computing systems. Monterey, 

California: ACM Press, 1992, pp. 373-380. 

J. Nunamaker, R. Briggs, D. Mittleman, D. Vogel, and P. Balthazard, "Lessons from a 

Dozen Years of Group Support Systems Research: A Discussion of Lab and 

Field Findings," Journal of Management Information Systems, vol. 13, no. 3, 

pp. 163-207, 1997. 

D. Pinelle and C. Gutwin, "Groupware Walkthrough: Adding Context to Groupware 

Usability Evaluation," in Proceedings of the SIGCHI conference on Human 

factors in computing systems: Changing our world, changing ourselves. 

Minneapolis, Minnesota: ACM Press, 2002, pp. 455-462. 

D. Pinelle, C. Gutwin, and S. Greenberg, "Task Analysis for Groupware Usability 

Evaluation: Modeling Shared-Workspace Tasks with the Mechanics of 

Collaboration," ACM Transactions on Computer-Human Interaction, vol. 10, 

no. 4, pp. 281-311, 2003. 

P. Polson, C. Lewis, J. Rieman, and C. Wharton, "Cognitive Walkthrough: A Method 

for Theory-Based Evaluation of User Interfaces," International Journal of 

Man-Machine Studies, vol. 36, pp. 741-773, 1992. 

S. Rajan, S. Craig, and B. Gholson, "AutoTutor: Incorporating Back-Channel 

Feedback and Other Human-Like Conversational Behaviors Into an Intelligent 

Tutoring System," International Journal of Speech Technology, vol. 4, pp. 

117-126, 2001. 

31 



F. Ritter, G. Baxter, G. Jones, and R. Young, "Supporting Cognitive Models as 

Users," ACM Transactions on Computer-Human Interaction, vol. 7, no. 2, pp. 

141-173, 2000. 

M. Steves, E. Morse, C. Gutwin, and S. Greenberg, "A Comparison of Usage 

Evaluation and Inspection Methods for Assessing Groupware Usability." 

Proceedings of the 2001 International ACM SIGGROUP Conference on 

Supporting Group Work. Boulder, CO, 2001. 

G. van der Veer and M. van Welie, "Task Based Groupware Design: Putting Theory 

Into Practice." Proceedings of the Conference on Designing Interactive 

Systems: Processes, Practices, Methods, and Techniques, DIS ’00. Brooklyn, 

NY, 2000. 

S. Wensveen, J. Djajadiningrat, and C. Overbeeke, "Please Touch Tangible UIs: 

Interaction Frogger: A Design Framework to Couple Action and Function 

Through Feedback and Feedforward." Proceedings of the 2004 Conference on 

Designing Interactive Systems: Processes, Practices, Methods, and 

Techniques. Cambridge, MA: ACM Press, August, 2004. 

R. Zultner, "TQM for Technical Teams," Communications of the ACM, vol. 38, no. 

10, 1993. 

32 



 

Type  Format Sub-type <X> 
Basic awareness who | what | when | how | where 

Object  object (shared | acquired | released | 
replicated | modified | moved) 

Mouse mouse moved 
Key key (pressed | released) 

Feedthrough 

Text text (typed | modified | deleted) 
Back-channel 
feedback  

 <X> , <X>  … 
 <X> , <X>  … 

 auditory | verbal | visual 

Coupling  [<X>] 
 [<X>] 

Coupling (area | objects | events | period) 

Table 1 – Syntax of pre and post conditions  

 

Type  Operators 
Verify (who | what | when | how | where) 
Verify object (shared | acquired | released | replicated | 

modified | moved) 
Verify mouse (moved)   
Verify key (pressed | released) 
Verify text (typed | modified | deleted) 

Awareness processor 
(inputs) 

Prompt (auditory | verbal | visual)  
Coupling processor 
(outputs) 

Move focus (area | objects | events | period) 

Table 2 – Groupware operators 

 

Propose initial value, Confirm 
value  

 cell modified  Negotiate value 

Propose alternative values, 
Withdraw values, Support 
proposed value  

 issues, positions, arguments 
modified  

Negotiate value 
 

Block negotiation   lock acquired  Negotiate spreadsheet 
Unblock negotiation   lock released  Negotiate value  
Firm position   firm acquired, basic who  Negotiate spreadsheet 
Remove firm position   firm released  Negotiate value 

Table 3 – Outline of collaboration with the tool  

33 



Physical Interface

Output devices

User
Input devices

Cognitive 
processor 

Motor processors 

Perceptual 
processors 

Long-term 
memory

Conventional 
flow

 

Figure 1 – Singleware architecture 

 

Physical Interface

Awareness 
output 
device

User

Input devicesMotor processors 

Awareness 
processor 

Input devices

Feedthrough

User

Motor processors 

Awareness 
output 
device

Awareness 
processor 

Coupling 
processor 

Coupling 
processor 

Coupling 
input device

Coupling 
input device

Back-channel 
feedback

Perceptual 
processors Output devices Output devices

Perceptual 
processors 

 Figure 2 – Groupware architecture 

34 



 

 

 

Figure 3 – The SQFD spreadsheet managed by the groupware tool (example from 

(Herzwurm et al., 2002)) 

 

 

Figure 4 – The MEG user interface 

35 



 

Figure 5 – The “firm” situation in the MEG user interface 

 

36 


	On the Analysis of Groupware Usability Using Annotated GOMS
	5Case Study
	5.1Case study Analysis and Obtained Results
	6Benefits and Limitations
	References

