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Abstract. Exception handling is a fundamental functionality of workflow 
management systems (WfMS). User involvement in exception handling is 
recognized as critical in various situations due to the unpredictability nature of 
the exceptions that can occur in a running workflow (WF) engine. The problem 
however is how to orchestrate human ad hoc interventions with a minimum 
impact on system integrity. The control flow and data integrity dimensions of 
the impact are analyzed. Our perspective is to allow the maximum latitude 
possible to user interventions while keeping system correctness. We propose a 
solution that uses a WF to guide users handling WF exceptions. Furthermore, 
we extended the WF engine with a propagation mechanism allowing users to 
involve multiple members of the organization in the exception handling WF. 
This solution is implemented in the OpenSymphony (OS) platform. The 
implementation details of the proposed solution in the OS platform are also 
given in the paper. 

 

1. Introduction 

Exception handling in WfMS is fundamental to react to situations that differ from the 
normal behaviour of the designed processes and is critical to successful 
implementation in real world scenarios [1; 12; 24]. 

There are two types of events that require non-standard WF behaviour [29]: 1) 
some specific requirements of an instance running on the WFMS requiring special 
attention (ad hoc changes); and 2) due to new legislation, strategy or reengineering 
efforts the company has to change the business model (dynamic or evolutionary 
change). In the former situation, changes have an impact at the instance level, while in 
the later situation a new model is defined for all instances of a specific class.  
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Usually, the timing associated with dynamic changes allows proper planning [10]. 
This technique has been deeply studied [2; 4; 10; 15; 23; 25; 29]. 

Our work is focused on ad hoc interventions, where the change cannot be predicted 
in advance nor proper planning is usually feasible. In this type of situations the user 
involvement is carried out on a problem-solving basis [2; 6; 11; 14; 15; 31]. 
Moreover, a coordinated effort among all the persons involved in problem solving is 
crucial to overcome the situation.  

The problem then is how to involve humans in exception identification and re-
covery while preserving the WF engine integrity. In this paper we developed an ap-
proach, introduced in [20], to support such human interventions. The basic solution 
consists in developing a toolkit of identification and recovery components. As a 
toolkit, this approach offers the flexibility, compositionality and extensibility 
necessary to allow humans handling exceptional situations. As a collection of 
individual components, each one must be developed to preserve the WF engine 
integrity. The toolkit exploitation is supported by a special WF dedicated to model 
and control the exception handling process (thus, exception handling is a process [10; 
26]).  

Two fundamental concerns have guided the implementation of this solution. One is 
that data describing the exceptional event is crucial to guide humans through the 
execution of recovery actions. The second issue is that an exception sometimes 
emerges as a series of events that travel throughout the organization, rather than one 
single exceptional event. As a consequence of these two concerns, the implemented 
solution also offers:  
• A situation awareness component, gathering information about the exceptional 

events, implicated processes and engine status. This information may be gathered 
from the system (e.g. event types) and humans involved in the process (e.g. 
characterization of the exceptional event). 

• An exception propagation component, allowing exceptions to propagate within the 
organization to a series of persons that may be involved in the identification and 
recovery actions. One human is always defined as being initially responsible for an 
exception, but can propagate the exception to other persons within the organization. 

In the next section we identify and delimit the scope of our approach. Section 2 
overviews related work. In section 3 we describe the concepts necessary to identify 
exceptions and define recovery actions. Section 4 begins with a brief introduction to 
the OS platform selected to implement the proposed solution and continues with a 
description of how the identification, situation awareness, propagation and recovery 
mechanisms are implemented in the platform. Finally, the last section presents the 
actual status of the project and indicates future work directions.  

2. Scope and Limitations of Ad hoc Interventions  

Our approach is based on two fundamental assumptions: 1) the ad hoc interventions 
are carried out on a problem solving basis through a coordinated effort of all persons 
in the organization that are able to contribute; 2) the set of interventions permitted to 
users should be, in one way, sufficiently complete to solve the highest number of 



cases in the best possible way and, in the other way, sufficiently correct so that the 
process proceeds under engine control and without errors after the interventions. 

Clearly, the first issue is a matter of Computer Supported Cooperative Work 
(CSCW) and will be critical to the implementation of our framework. Even though 
this matter is not the main objective of this paper, the work developed by [14] gives 
important guidelines on how to improve support to human interventions during 
exception recovery. 

The second issue represents in some way a trade off: the higher the latitude of 
intervention, the higher the probability to have inconsistencies in the WF engine. Our 
approach was to study a large number of possible interventions and later verify their 
correctness. Before establishing the correctness criteria, we will discuss the various 
perspectives that should be taken into consideration when analyzing WfMS. 

 [27] identifies the following WF perspectives: 1) control flow; 2) resource or 
organization; 3) data or information; 4) task or function; and 5) operation or 
application. According to the author’s arguments we will also abstract from resource, 
task and operation perspectives.  

The data perspective will be discussed in more detail since it is a matter of some 
controversy. Our approach also abstracts from the control dimension. In fact, one of 
the primary objectives of WfMS was to remove control flow dependencies over data 
structures [17]. We advocate that any data inconsistencies should be identified and 
dealt within tasks. Moreover, the ad hoc interventions should not be constrained by 
data dependencies, as they can be dealt afterwards at the task level. 

Our approach recognizes that a solid theoretical ground is needed to identify proper 
ad hoc interventions that keep the soundness (as defined in [27]) property of a WF. 
Therefore our focus is on the control perspective. 

The concept of soundness assures that for any case the procedure terminates 
properly, i.e., termination is guaranteed, there are no dangling references, and 
deadlock and live lock are absent. 

The adopted correctness criteria is slightly different from [23]: 
The ad hoc interventions should not introduce any inconsistencies or errors in 

running instances (e.g., deadlocks or live locks). The process should be able to 
terminate without any other interventions under WfMS engine control after the 
interventions are carried out. 

Finally, exceptions that can be anticipated can also be handled with some degree of 
planning and therefore are not the main objective of this work. 

3. Related Work 

Exception handling has been mainly approached with a systemic perspective. The 
foremost solutions were based on variations of the transactional mechanism used in 
database management systems. [32] has a good survey on the different methods used 
by this approach. Some recent solutions [3; 7; 16; 18] deal mainly with anticipated 
events. These approaches are very useful to increase the flexibility of WfMS by 
increasing their ability to adapt to different circumstances. However, a framework to 



support human involvement in solving exceptions has never been proposed in this 
context. 

[14] presents an interaction framework for WF enactment. This framework is 
mostly important for unstructured processes and falls more on the CSCW area than on 
the systemic perspective. We believe that this framework is also important to guide 
human interventions during ad hoc operations. 

[6] has one of the most complete studies of exceptions supporting human 
intervention. Although the cooperation of different users in solving exceptional 
situations is considered a critical issue, a conceptual framework to guide such 
approach is not proposed. We also do not see any evidence of the application of some 
correctness criteria. 

In [26] a comprehensive model is proposed to deal with all possible types of 
exceptions but, again, a framework to involve the users is unavailable. The 
interventions dealing with unanticipated events are not presented as well. 

 

4. Exception Handling 

The exception handling process is divided in two phases: 1) exception identification; 
and 2) ad hoc interventions necessary to restore the system to a coherent state. 

The next section describes the mechanisms necessary to identify the different 
classes of exceptions. The data structure that describes an exception is also detailed. 
The following section describes the exception recovery model and tools implemented 
to perform ad hoc interventions. 

4.1. Exception Identification  

There are several ways to identify exceptions in WF, according to different per-
spectives that one may apply to the problematic situation (the reader may find some 
orthogonal criteria for exceptions classification in the related literature [5; 8; 20; 24]). 
In particular, one may consider a system perspective and assume that an exception 
triggers an exceptional event in the system. On the other hand, some types of 
exceptions cannot be identified by the system and must be triggered by humans or 
external applications [5; 13]. The following classes of exceptional events are defined: 
• Data events – Identified within the task that generates an error condition. Data 

events, even though identified within a particular instance, can affect a collection 
of instances (e.g., detection of the same trip being booked twice for the same 
client). 

• Temporal events – Triggered on the occurrence of a given time stamp. Temporal 
events may be further classified into: timestamps, periodic and interval. 
Timestamps occur when a completion date associated with a task is not re-
spected; periodic events occur on a determined periodical sequence (e.g., every 
morning at 9:00); and interval events are associated to time constraints between 



two tasks, e.g., the maximum time allowed after task 1 finishes before task n 
starts.  

• WF events – Triggered during task or process start/end operations. Examples: a 
deadlock situation or a loop being executed more than expected. 

• External events – These events are triggered from external sources. Example: a 
user cancels a given order. 

• Noncompliance events – Triggered whenever the system cannot handle the process 
due to differences between modeled tasks and reality. 

• System/application events – Triggered when the system is not able to recover from 
lower level failures, such as database or network failures (lower level failures are 
propagated as semantic failures [9]). 

The post-functions defined by the WfMC [33] are used to identify the presence of 
data events upon completion of a given task. On the presence of a data error, the WF 
engine automatically triggers the event and instantiates the exception recovery WF. 

We will now describe separately the identification mechanism for the three differ-
ent classes of temporal events. 

The method used to identify the interval class, is depicted in Figure 1 using the 
Petri net notation [28]. Assume that the WF designer would like to define a time 
interval constraint between tasks 1 and n in Figure 1.a. Figure 1.b shows how the WF 
specification has been changed to incorporate that constraint. If taskn is executed 
before t1 fires, the constraint was respected and no temporal event is triggered. 
However, if t1 fires before taskn, a token is placed on p2 and the system triggers an 
exceptional event. The transition t2 implements the same task as taskn and is inserted 
in the specification to assure that the WF execution will not stop on taskn if a temporal 
event is triggered. 

Fig. 1.  Identification mechanism for the interval class 

The firing of t1 will instantiate the exception recovery WF. The running workflow 
can be suspended or allowed to continue depending on the specific application.  

For the timestamp class we use a similar scheme, where task1 is the initial task and 
taskn is the task identified in the timestamp. In this situation the timer is fired when 
the predefined date/time is reached. The exception recovery WF is instantiated as in 
the above example. 

Figure 2 shows the implementation of the trigger mechanism for the periodical 
class. The original model is shown at the top where task1 is the first task of the WF 
and taskn is the last one. The place p1 and transition t1 where inserted to implement 
the periodical class. While the WF instance is running, the timer is also running. 
When the timeout is reached, one periodical event is triggered and the timer is 

Task 1 Task n

. . . 

Task 1 Task n

. . . 

a) Before synchronization b) Synchronization of task 1and task n

p2
p1

t2t1



restarted. The timer stops with the firing of the last transition in the WF. Once again, 
the transition t1 instantiates the exception recovery WF. 

Fig. 2. Identification mechanism for the periodical class 

To identify a WF event, a special condition must be inserted in the pre-functions or 
post-functions of every task that the WF modeler wants to monitor. 

The external events are a particular category of events, because they cannot be de-
tected by the system, as mentioned before. Thus, this type of event must be triggered 
by a human or external application. 

The noncompliance events correspond to situations where the desired process ei-
ther deviates from the model (by requiring some special treatment) or the model is not 
applicable to a particular context. In this type of situation the system requires some 
additional information regarding the model, i.e. additional tasks, tasks that should be 
modified or removed from the model, etc. Due to the intrinsic nature of these events, 
they are dependent of the specific context, which must be assessed by a human. 
Furthermore, these events may affect several tasks and processes.  

Finally, the system/application events have characteristics similar to external 
events [19], although, in some circumstances, the exception may be automatically 
identified, e.g., the system is able to identify that a database server stopped without 
requiring human intervention.  

Besides the trigger mechanism described above, we should now discuss the in-
formation that the system may associate to exceptional events. In this respect one 
should consider the following parameters: 
 
1. Affected instance(s) –list of the affected WF instances. 
2. Affected task(s) – identification of one or several tasks where the exception was 

identified. For instance, interval events and WF events are associated with one 
single task while data events may be associated with several tasks.  

3. Data structures that characterize data events.  
4. Expired timers, for temporal events in general. 
5. Event categorization – classification of the event, as previously described.  
6. A brief textual description of the event. This information applies to external events 

triggered by humans.  
7. Model deviations – this applies to noncompliance events, and identifies a list of 

tasks that should be inserted, modified or removed.  

We may also consider the following additional parameters: 

8. Root cause – textual description, produced by a human, with the perceived root 
cause for an exception. 

9. Person responsible – someone that may be responsible for the exception. This 
person may be selected by the system, from the list of persons associated to 
affected tasks, or selected by a human, as with the root cause mentioned above.  

. . . 
Task 1 Task n

p1

t1



10. Impact – for every affected instance, the system may also provide information 
about deadlines and potential impact to the organization (based on metrics such as 
the diversity and number of affected tasks). 

From the above list of items, the event categorization, affected tasks (at least one) 
and person responsible are mandatory. 

It is now time to move forward from exception identification to recovery.  

4.2. Exception Recovery 

When an exceptional event is triggered, the system instantiates the WF recovery proc-
ess modelled in Figure 3 and passes the several parameters identified in the previous 
section to the components described in this section.  

 

Fig. 3. Workflow Model for Exception Handling  

There are two alternative ways to instantiate this process: either by system detec-
tion or by user insertion. They have been separated because these two tasks initialize 
the recovery process in different ways. The system detection task is used with the 
following event types: data, temporal, workflow, and system/application events. The 
user insertion task is used with external, noncompliance and system/application 
events (note that system/application events may be either identified by the system or 
by a human). 

In both cases, the person responsible must have been identified, because that is the 
person who will be requested to execute the next action in the WF recovery process: 
edit exception info. 

The purpose of this task is to specify some event parameters that the system was 
not able to specify, or should be redefined by a human (because human knows more 

System
detection

Place the system 
back in running 
mode

Define new 
responsible

Create new 
description

Initiate new 
propagation Change 

association of 
instances

Edit situation 
awareness

Choose 
instance(s)

Handling 
Finished?

Edit Exception 
Info

User
insertion

Execute 
Recovery 
Action(s)



about the context). E.g., the root cause falls in the first case, while the list of affected 
instances and person responsible fall in the second case. This task is supported by the 
Exception Information Component, which has a User Interface (UI) and implements 
the several mechanisms necessary to identify exceptional events and interface with 
the WF engine (e.g., access timers and process variables, or obtain the list of affected 
instances).  

After this task the system enters in four parallel threads: 
• Exception propagation; 
• Affected instances; 
• Situation awareness; and  
• Apply recovery actions. 

The exception propagation task allows the person responsible to propagate the 
event to one or several persons. This task is supported by the Exception Propagation 
Component, which besides other functionality, implements the propagation 
mechanism by replicating exceptional events (i.e., no new events are generated, they 
are simply replicated) and stores the propagation history in a database. 

During the situation awareness task, the person responsible can analyze previous 
propagations and all parameters associated to the exceptional event. Currently, the 
Situation Awareness Component implementing this functionality is basically a UI that 
transforms data provided by other components into a human readable format 
(although additional functionality has been conceived to relate this data with other in-
formation that may be available in organizational databases). 

In the affected instances loop, the person responsible either selects WF instances 
one-by-one, if the scope is defined and limited, or selects the whole collection of WF 
instances from one process and associates to the exception. To select the affected in-
stances one-by-one, the person responsible can navigate through the list of WF 
instances running in the WF engine. The user can also dissociate WF instance(s) 
previously affected to the exception. However, a WF instance cannot be dissociated if 
one of the recovery actions, apart from suspend/reinitialize, has been executed over it. 
The person responsible can also navigate through the list of processes running in the 
WF engine. The Situation Awareness Component also implements this functionality. 

The recovery actions loop is where recovery actions may be executed on the se-
lected WF instance(s). The person responsible first selects the WF instance(s) and 
then chooses one of the available actions. The Toolkit Component currently 
implements the following list of actions: 
• Suspend/reinitialize instance(s); 
• Ad hoc refinement; 
• Forward and backward jumps; 
• Terminate instance(s); 
• Move operation; and 
• Ad hoc extension. 

Using the suspend/reinitialize action, the person responsible can suspend the 
execution of a specific instance(s). Later on, by issuing another action, the instance(s) 
can be set to the running state. During the suspended state no tasks can be initiated. 
However, the tasks that already have started are not aborted by the system. The per-



sons attached to those tasks are informed of the situation. These operations are not 
restricted since they do not affect the correctness criteria. 

Using the ad hoc refinement action, the person responsible can perform a set of 
atomic activities from the list of standard WF activities, e.g., making a phone call, 
sending an email or writing a letter. The list of standard activities is currently small 
but expected to grow during system tests. 

Still considering ad hoc refinement, another list is made available to the person re-
sponsible with all tasks defined in the affected process. The person responsible can 
then execute a task that was not yet executed, or repeat the execution of a task already 
executed. If a task is executed in advance and the user does not want to execute it 
twice, a marking mechanism is implemented that forces the task to be skipped when 
reached under model execution. The ad hoc refinement is not restricted. Based on 
[29], a parallel thread can be initiated, executing other tasks, while preserving the 
soundness of the final model. Furthermore, this is a valid transfer rule with no 
deadlocks and proper completion. 

Backward jump skips to a previous step, while forward jump skips forward to 
another step in the WF instance.  

As in [22], only backward jumps to actions in the history of the running instance 
will be allowed. However, since we advocate that the WF control evolution should be 
independent from WF data, we allow jumps to actions prior to loop iterations. We 
assume that tasks within and prior to the loop always assure the intended behavior of 
the loop control variables. 

On the other hand, on the jump 1 in Figure 4, the system reaches a deadlock on S5 
because S3 does not have any token. Only jump 2 is correct. To avoid this type of 
problem, the two rules of the following criteria must be satisfied: 1) the subnet 
starting at the destination place of the jump and finishing at the original place can be 
isolated (including every node in every branch leading from the start place to the end 
and every arc that finish or start on those nodes); 2) the isolated subnet is sound. The 
application of this rule follows from theorem 3, statement 3 in [27].  

Fig. 4. Backward jump before AND-Splits 

The two different ways to implement forward jumps are shown in figure 5. As in 
[22]: either the tasks in between are aborted (Figure 5.a) or executed in parallel with 
the tasks starting at the jump place (Figure 5.b).  

If the tasks are aborted, the actual token is changed to the new place. A check must 
be done to assure that the system does not run into a deadlock or live lock situation. 

Jump 1Jump 2
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S2 S4

S3 S5
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Like in backward jumps, we restrict the jump to the condition that the subnet from the 
origin of the jump to the target can be delimited and are sound. 

On the other hand, if the tasks are executed in parallel, an AND-Split is inserted on 
the transition before S1 (not show in Figure 5 for simplicity) and a task Tm (Figure 
5.b) must be selected to synchronize the two parallel threads. The arc from Tn to Sn is 
removed and an AND-Join is inserted on task Tm with arcs from Sm-1 and a newly 
created place Sk. This functionality requires modifying the model.  

Figure 5 uses linear execution for simplicity. However, the operation will only be 
allowed if the subnets delimited from S1 to Sn-1 and Sn to Sm-1 (subnets as defined 
above) are sound. This statement can be proved from the properties of soundness. 

To implement forward task execution (as described in [22]), the person responsible 
can use ad hoc refinement to execute the task and mark the tasks to be skipped (as 
mentioned before). This way, the task is executed during exception handling and 
skipped whenever reached during standard execution of the model. 

Fig. 5. Forward jump. a) abort tasks; b) parallel execution 

To terminate an instance is to change a WF instance to the end state. No more 
actions will be executed on that instance. 

The move operation moves a block in the process to a new location, keeping the 
remainder of the model unchanged. This change can only be executed if the final 
model is sound. Moreover, depending on the state of the instance, this operation can 
have different impact; hence, if there is more than 1 instance affected by this change, 
the dynamic change bug (as introduced in [11]) must be taken into consideration [29]. 
Our approach is to group instances according to their current state and apply different 
operations over each group. 

Ad hoc extensions have a broader scope and a deeper impact on WF instance(s), 
since the person responsible can select an alternative path or choose a whole new 
model. On the alternative path scenario, we impose the restriction that only one thread 
is being executed on the instance. A check is made on the soundness property of the 
new path. If there is more than one instance affected, the change operation can be 
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applied only to those instances with tokens on the same places. Our approach is to 
group instances as in the previous situation. 

For the new model situation, a correspondence must be established between every 
place where the current instance has a token and a place in the new model (called 
destination places from now on). To check consistency, a new place is inserted in the 
new model with an arc to an AND-Split. This new AND-Split will have arcs for every 
destination place. If this model is sound, the operation can be carried out. As in the 
previous situations, the dynamic change bug must be taken into consideration when 
several instances are affected. If the change cannot be performed to all instances, 
different change operations (for different target models) will be carried out. Some 
special care will have to be taken on backward jumps after this operation: no further 
backward jumps to destinations in the old sub-model should be allowed. 

Once the recovery actions are executed and the system is back to a coherent state, 
the system executes the last transition, place the system back in running mode, and the 
exception handling is complete. 

5. Implementation in the OpenSymphony Platform 

The adopted OS is an open source platform that implements a WF engine, user and 
role validation, a timer component, persistence store of WF application data and Web 
interfaces. All components are developed in Java and run over a Servlet container. 
WF models are stored in XML files. 

The next section introduces the platform and the two following sections describe 
the implementation of exception identification and recovery. 

5.1. OpenSymphony Platform 
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Fig. 6. OpenSymphony referential model 



The “osworkflow” component of the OS platform implements the WF engine. This 
component stores the WF relevant data in a RDBMS. Figure 6 represents the 
complete set of tables and their relationships in the OS referential model. 

The main table, OS_WFENTRY, after the workflow instance has been initialized, 
is shown in Figure 7. The ID field is the key for the WF instance, the NAME is the 
file with the model, and STATE indicates whether this instance is activated, sus-
pended or completed. 

 

ID NAME STATE 
… 

32 example.xml Activated 
… 

Fig. 7. OS_WFENTRY table after the example initialization 

When a new instance is created, the WF engine inserts a new row in the table with 
a generated ID field and the file name selected by the caller. After successfully execu-
tion of the initialization tasks, the field STATE is set to activated. 

An example of the sequence of methods to create a workflow instance is: 
  Workflow wf = new BasicWorkflow(username); 
  long id = wf.initialize("example", initAction, mapIs) 
The first method initializes the class and sets an internal variable with the 

username of the user logged in the system. The second method creates and initializes 
the new instance. The first parameter is the name of the XML file with the model, the 
initAction variable indicates the number of the action to be executed, and mapIs 
is a set of key to value pairs used by the action. 

In the OS platform states are named steps. For every step there is a list with the 
actions available for execution. Figure 8 shows the typical hierarchical organization 
of a step with a listing of actions 1 to n. The elements of action 1 are also shown. The 
step in Figure 8 is the initial step for the WF and is named “initial actions”. For the 
remaining steps in an OS model, the upper element has a NAME and ID that uniquely 
identify the step within the model (replacing the “initial actions” tag in the Figure 8). 

Fig. 8. Hierarchical organization of a step in the OS platform 

To initialize the WF using action ID 1, the variable initAction must be equal 
to 1 in the wf.initialize method. 

initial actions

action id =“1”

restrict-to
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action id =“n”
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As represented in Figure 8, one action can contain four distinct elements: restrict-
to, pre-functions, results, and post-functions. 

The restrict-to element is composed by a series of conditions that must be evalu-
ated to true to allow the execution of the action, e.g., only users that belong to a given 
role can execute that action. 

After evaluating the conditions, the engine executes the pre-functions. They can 
implement tasks and set variables before the state transition takes place. 

The next element is named results and is used to control the transition, i.e., the next 
step for the WF instance. Each element results can have 0 or more conditional results 
elements but must have at least one unconditional result element [21]. This structure 
can be compared to a “case” statement in a typical programming language where the 
element “case else” is mandatory. The first conditional element that is evaluated to 
true is executed. If none of the conditional elements is true the unconditional element 
is executed.  

Let us assume that there are no conditional elements in action 1 and the 
unconditional element is: 
<unconditional-result old-status="Finished"  
  status="Run" step="1" owner="$(caller)"/> 

The unconditional result indicates to the WF engine the number of the next step 
and a set of values to be stored in the database. This information is usually referred as 
WF relevant data [33] and will be described bellow. 

After the transition takes place, the post-functions are executed (e.g., send an email 
to a user indicating that the action in the new step of the WF instance is ready to be 
executed). 

To store the information about the current states of the various WF instances 
running on the system, the OS uses the table OS_CURRENTSTEP. Figure 9 lists the 
table field values after the successful initialization using action 1. The ID field is the 
key of this table that is automatically generated and ENTRY_ID is the foreign key to 
reference the WF entry table. The fields STEP_ID, OWNER, and STATUS reflect the 
attributes specified in the unconditional result element. The OWNER field is 
specified in the attribute owner and, assuming the username that triggered the ini-
tialization process was “Joao”, is the value shown in Figure 9. The state assumed by 
the WF instance after the transition takes place is stored in the STEP_ID field and is 
defined in the attribute step (1 in the example). Finally, the attribute status specifies 
the field STATUS of the table and can assume any value. 
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DATE 
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_DATE 

DUE 
_DATE 

STATUS CALLER 
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5 32 1  Joao 4/4/2004 

11:50:33 
  Run  

. . . . . . . . 

Fig. 9. OS_CURRENTSTEP table after the example initialization 

The fields ACTION_ID, FINISH_DATE, and CALLER are set to null because 
they will be used when the next action, executed on step 1, is performed. The 
DUE_DATE field could have been used to set the desired due date for this task. 



The conditional and unconditional results correspond to an OR-Split, i.e., various 
conditional results being tested and only one defining the next step means that the 
direction of the flow is chosen by the executed element. The AND-Split has a slightly 
more difficult definition that is out of the scope of this document. Nevertheless, if an 
AND-Split is executed, the table OS_CURRENTSTEP will have 2 entries for this 
instance. 

After the transition takes place, i.e., the entries in the database are changed, the WF 
engine executes the post-functions. Then, the instance becomes idle until another 
action is performed over it. In the example, the WF is on step ID 1 waiting for any 
user-triggered action or any automatic action (the OS platform has a special type of 
actions, called automatic actions, which are automatically fired when the engine 
reaches the step where they are defined). The XML model files must have entries for 
every reachable step. 

 

ID ENTRY 
_ID 

STEP 
_ID 

ACTION 
_ID 

OWNER START_ 
DATE 

FINISH 
_DATE 

DUE 
_DATE 

STATUS CALLER 

. . . . . . . 
5 32 1 3 Joao 4/4/2004 

11:50:33 
6/4/2004 
15:30:45 

 Run Joao 

. . . . . . . . 

Fig. 10. OS_HISTORYSTEP table after execution of action 2 

Assume now, that action number 3 (defined in step 1 of example.xml) is later exe-
cuted by username Joao on 6/4/2004 15:30:45. The row in Figure 9 is copied to the 
OS_HISTORYSTEP table and a new row is inserted in OS_CURRENTSTEP table 
reflecting the results of action 3. Figure 10 lists the table OS_HISTORYSTEP. 

Figure 10 shows the fields ACTION_ID, FINISH_DATE, and CALLER with the 
values already settled and defined by the execution of action 3. 

Figure 11 displays the state transition diagram for the engine and summarizes the 
above description.  

Fig. 11. State transition of the OS engine 

To continue execution, the WF engine has methods to identify what are the 
available actions that a specific user can perform on a WF. These methods use the 
workflow ID to retrieve the actions defined in the model for the step. 

Finally, the tables OS_CURRENTSTEP_PREV and OS_HISTORYSTEP_PREV 
identify the action executed before the current step and link the history of the tasks 
executed in the WF, respectively. 

Wait for 
action trigger

Test restrict-to 
element

false
true

Execute 
pre-functions

Results: find 
next step

Execute 
post-functions



5.2. Exception Identification in the OS Platform 

The process described in the previous section is used to create a new instance in the 
exception recovery WF, while the initialization of the exception related information is 
achieved through database utilities out of the scope of this paper. We will limit our 
description to the implementation of the exception triggering mechanisms. 

The data events are implemented through the last pre-function element of the 
action. It identifies the presence of a data event and instantiates the exception 
recovery model. A post-function is also inserted to change the WF state to suspended 
if indicated in the data structure generated by the event. If the violated constraint is a 
generic rule, the other instance(s) that violates the constraint could also be identified 
and suspended if desired. 

All temporal events are supported by the Quartz component provided by the OS 
platform, which implements a time triggering mechanism. Note also that a place in a 
Petri net is a step is OS and a transition is the set formed by the “pre-functions”,  
“results” and “pos-functions. Their implementation in the OS platform is trivial, given 
the equivalence relation just mentioned, and therefore out of the scope of this paper. 

In the case of an end task, a pre-function element is inserted in the action to 
identify the presence of an exceptional situation. For the start task, the functionality is 
implemented in a post-function. If the instance must be suspended, a post-function 
implements the functionality just after the transition takes place. 

For the start instance, the test is carried out in the post-functions of the initial 
action and for the end instance a pre-function is inserted in the final action. 

Finally, the system and application events are identified using the catch mechanism 
of programming languages. If during the execution of some code (condition, 
pre-functions, post-functions, or a user defined task) a non-caught exception construct 
from the program is raised, the code should instantiate the exception recovery WF. 
The decision whether the instance is suspended or not should depend on the code 
being executed, type of exception and application. 

5.3. Exception Recovery in the OS Platform 

To implement the exception recovery process, the model shown in Figure 3 was 
developed in an XML file, and the interfaces to propagate an exception, affect 
instances and edit descriptions were built using JSP to run over a Web environment. 

As in the previous section, we will only describe the implementation of the various 
recovering tools used in the model. 

The changes in the WF models of the OS platform are accomplished by editing the 
XML model file. A special method was developed to change the WF model used by a 
particular WF instance. This method will be used in various operations and changes 
the field NAME in the OS_WFENTRY table. A log entry is also generated for this 
operation. The description of the version system used in the new models is out of the 
scope of this paper. 

In the tool suspend/reinitialize instances(s), the field STATE of the WF 
OS_WFENTRY table is used. The suspended value in this field indicates that the WF 
instance cannot start any activity. 



If a task started before the instance changes to the suspended state, a step transition 
can take place. The system should send messages to the person(s) executing manual 
tasks and to the supervisors of the automatic tasks. 

In the ad hoc refinement tool, the list of standard actions is defined in a dedicated 
XML file. Some changes had to be made to the OS platform to support the execution 
of these actions within the scope of the instance. A WF model designer has to verify 
the modifications and inserts them in the model. 

For the actions defined in the model of the running instance no special code was 
developed. These actions are listed to the user that can select the desired one. 

To implement forward and backward jumps a new action is inserted in every step 
that uses the number of the destination step as a parameter. 

To identify whether we are in the presence of a backward jump or a forward jump, 
the OS_HISTORYSTEP table is verified. If the destination step is in the table for this 
instance, we are in the presence of a backward jump, otherwise we must investigate 
the presence of a forward jump. 

To allow a backward jump, the subnet, as defined in the exception recovery 
section, is identified. As this version of the system does not verify the soundness 
property of the models, we will restrict backward jumps to steps where the subnet 
only implements the sequence pattern, as defined in [30]. Later versions will 
implement the functionalities mentioned in the exception recovery section. 

To investigate the presence of a forward jump, a simple algorithm is used to 
generate a tree of reachable steps from the current position. Once the destination step 
is found, we are in a presence of a forward jump. Any loop is iterated only once. A 
depth limit can be defined for complex models. If the step is reachable, the forward 
jump may be permitted. Again, as in backward jumps, only jumps in sequence 
patterns will be allowed. 

If the user wants to implement a forward jump with parallel execution of the tasks 
between the actual step and the destination, the model must be changed. An 
AND-Split is inserted on the actual step and a task must be selected to synchronize 
the two parallel threads. An AND-Join is inserted on the task. 

To terminate an instance, the field STATE of the OS_WFENTRY table is changed 
to completed. 

The move operation requires model file modifications by a WF modeler to change 
the position of the task or block of tasks. Again, as the check for the soundness 
property is not implemented yet, this version will only allow changes of a block that 
only implements the sequence pattern and is moved in the limits of a branch that also 
implements the sequence pattern. If more than one instance with different step 
numbers are affected, the operation is divided into groups, as described in the 
exception recovery section. The change operation is implemented for every group. In 
some situations different models must be defined for different groups (when the 
instance state is between the previous position of the block and the new position), 
while in others only the matching between the original step number and the 
destination is different. E.g., assume a block was moved forward and there was no 
problem to execute the block twice. The instances that were executing a task in the 
middle of the block would become with the step number of the action that was 
positioned immediately after the block before the operation was carried out. This way 



it is assured that these instances do not skip the tasks that are between the old and the 
new positions of the block. All other instances keep the step number. 

In the alternative path of the ad hoc extension, the user chooses another WF model 
from a list with a predefined new trajectory for the remaining steps. As described in 
the exception recovery section, the instances are grouped according to their actual 
step. The new model must have one step number equal to the present step in the 
instances. The correctness of the new model is based on the same assumption of every 
model in the system: the WF modeler has enough knowledge to construct sound 
models. 

In an ad hoc extension every step number of every active thread in the affected 
instance(s) must have been defined. Again, to overcome the dynamic change bug, 
different models can be generated according to the different combination of steps in 
the different instances.  

In the two previous cases, if there are no available models the user contacts the WF 
modeler to develop a new one. 

6. Actual status and future work 

Two field tests and a simulation of the described system are in their initial phases. 
The field tests are being carried out in a Portuguese Port Authority and a design 
company, while the simulation tests are being carried out in a multinational 
automobile manufacturing company. The sizes of the two organizations involved in 
field tests are significantly different: the port authority has around 200 employees, 
while the design company has 10. By using different type of companies and different 
sizes we expect to understand how the system behaves in very different scenarios. 

The completeness of the approach has to be validated, i.e., we have to test whether 
the implemented functionalities are complete enough to solve the exceptional 
situations that emerge in field tests. Some metrics used to evaluate the various ad hoc 
interventions will enable the selection of the most appropriate one for a given scenario 
in the future. 

The impact on the number of models due to the number of instances affected by 
the exceptions will also be evaluated. The result of this evaluation will identify the 
need for the implementation of solutions for the dynamic change bug. 

A test of the soundness property will increase the capability of the operations in 
various situations. This functionality will be developed in future versions. 

 On the other end, the growth of the standard list of actions used in ad hoc 
refinement will improve the system capability to deal with exceptions. The evolution 
of the list in the different scenarios will also be a matter of further research. 

A log system that stores all the actions and propagations performed on every 
exception will be used to suggest strategies for similar situations. The mapping 
mechanism is a matter for later study. 

We also expect to contribute to the development of the OS platform by increasing 
its flexibility to deal with exceptional situations. 
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