
Workflow Recovery Framework for Exception
Handling: Involving the User

Hernâni Mourão1, and Pedro Antunes2

1 College of Business and Administration, Setúbal Polytechnic Institute, Campus do
IPS – Estefanilha, 2914-503 Setúbal, Portugal, and LASIGE (Laboratory of Large

Scale Information Systems)
hmourao@esce.ips.pt

2 Faculty of Science, University of Lisbon, Departamento de Informática, Campo
Grande – Edifício C5, 1749-016 Lisboa, Portugal, and LASIGE (Laboratory of Lar-

ge Scale Information Systems)
paa@di.fc.ul.pt

Abstract. Unexpected exceptions in WfMS are situations not predicted during the
design phase. Human involvement in handling this type of exceptions has been rec-
ognized to be a crucial factor. We developed a framework to support the user in
handling these situations by redesigning the flow, ad hoc executing the affected
tasks, and manipulating engine status. A good characterization of the exception is
needed to help the user identifying the best executable solution. The proposed char-
acterization results from integrating operational, tactical and strategic perspectives
over unexpected exceptions. An open source platform was selected to establish a
test base on which the framework will be tested.

1 Introduction
Workflow exceptions are situations not predicted in the workflow model or when
there exists a deviation from the model and the real world [16]. Workflow exceptions
have been accounted for almost half of the total working time in an office [21].

Up to now, workflow exceptions have mostly been addressed in a systems perspec-
tive, even though a consensus seems to arise on the necessity of involving the user in
the recovery of a specific kind of exceptions. Therefore we developed a framework
aimed to fulfill this identified gap. The framework is built around the idea that human
intervention must be supported with quality information about the problematic situa-
tion, status of the workflow engine and possible recovery solutions.

Considering the work in progress, this paper currently offers two contributions to
exception handling in WfMS: (1) an integrated perspective over exceptions and ex-
ception handling, considering three different organizational levels (strategic, tactic and
operational) affected by exceptions and respective human roles in recovery (design
changes, ad hoc execution, and engine status manipulation); and (2) a set of WfMS
components necessary to help and support these roles: event handler, situation aware-
ness, problem characterization and recovery toolkit. These components are currently
being validated on an open source platform.

The paper is organized as follows. Section 2 reviews the literature and establishes
the grounds for the proposed framework. Section 3 presents the integrated perspective,
where different exception handling approaches are mapped to the organizational levels
where they occur and are handled. In section 4 we describe the components that con-

paa
Lecture Notes in Computer Science, vol. 2806, pp. 109-125, 2003, Groupware: Design, Implementation and Use, J. Favela and D. Decouchant, Eds. Berlin: Springer-Verlag.

stitute our solution. In section 5 we describe the project current status, identify the
main current contributions, and discuss the expected results.

2 Literature Review
In this section we first identify the characterization of exceptions found in the litera-
ture and then the handling strategies adopted.

2.1 Characterization of Exceptions
[7] characterize failures and exceptions in a single dimension, encompassing two types
of failures and two types of exceptions:
• Basic failures – Associated with failures on the systems supporting the WfMS

(e.g., operating system, database management system and network failures);
• Application failures – Failures on the applications invoked to execute tasks (e.g.,

unexpected data input);
• Expected exceptions – Events that can be predicted during the modelling phase

but do not correspond to the “normal” behaviour of the process (e.g., a customer
reporting a car accident in a car rental company);

• Unexpected exceptions – When the semantics of the process is not accurately
modelled by the system (e.g., changes in rules, or a change in the order processing
of an important client).

[8] suggests an escalating concept to transform the failures that cannot be resolved
in the level where they occur into exceptions. This way, the classification can be re-
duced to exceptions.

[4] combines the above view with another orthogonal characteristic described as
“exception source.” The exception source can either be internal or external to the
workflow. A similar classification is adopted by [22] but without any distinction be-
tween expected and unexpected exceptions.

Next, we will analyse the expected and unexpected exceptions in more detail, pri-
marily basing our comments on results produced by the WfMS research community.
Later, to complete this review, we will present a broader perspective, oriented towards
the organizational semantics.

Expected exceptions are cases that can be predicted during the modelling stage but
do not correspond to the “normal” process behaviour. Some mechanisms should be
implemented to handle these situations because they can occur frequently [7] and can
cause a considerable amount of work to process. In the car accident example, the
company has to re-schedule all future rentals for that specific car until the car is re-
paired. The “normal” behaviour of the process should have been the returning of the
car to the company, as planned, while the accident corresponds to a deviation or an
“occasional” behaviour: an expected exception.

[2] identifies four classes of expected exceptions, according to the events that gen-
erate them: workflow, data, temporal, and external. Workflow exceptions occur on
starting or finishing a task. When workflow relevant data changes a data exception can
be fired. Temporal exceptions are related to time stamps, e.g., car not returned on
time. Finally, external exceptions are activated by external signals, e.g., the car acci-
dent example.

Unexpected exceptions result from inconsistencies between process modelling in
the workflow and the actual execution [2]; and result from incomplete or design er-
rors, improvements or changes in the business manoeuvre or quality and customer
satisfaction issues not known during the modelling stage. This type of exceptions is
frequent in highly complex or dynamic environments and cannot be predicted during
the modelling phase. Usually, unexpected exceptions force the process to change to a
halt state and require human intervention [13].

In situations where this kind of exceptions occurs frequently, one should consider
redesigning the workflow model, if it is out of date, or adopting different technologies
based on collaborative work or adaptive workflow systems [3].

[21] proposes a taxonomy based on the organizational semantics associated to ex-
ceptions. This work defines a set of base concepts necessary to construct a consistent
conceptual framework and fundament the characterization of organizational excep-
tions. Namely, the concepts of rule, case, event and their relationships are the basis for
the framework.

The proposed taxonomy was developed from empirical studies. A special attention
was made on the social and financial impacts of exceptions. Six different criteria are
used to classify exceptions:
• Exceptionality – Difference between the exceptional and “normal” event;
• Handling delay – Time elapsed between the exception identification and handling;
• Amount of work – Extra work required to handle the exception when compared to

the normal event;
• Organizational influence – Number of people involved in the exception;
• Cause – A measure of the importance of the reason for the exception;
• Rule impact – the changes in the organization’s rules due to the exception.

Three classes of exceptions were identified according to exceptionality: established
exceptions, otherwise exceptions, and true exceptions. Established exceptions occur
when rules exist in the organization to handle an event but the right ones cannot be
found. Otherwise exceptions occur when the organization has rules to handle the nor-
mal event but do not apply completely to the case. Finally, true exceptions occur when
the organization has no rules. According to the organizational influence criteria, ex-
ceptions can also be classified at employee, group and organizational level.

2.2 Exception Handling
WfMS systems should deal with failures and exceptions at execution time because
predicting any possible cause of failure or exception during design is very difficult or
even impossible and makes the system very complex and hard to manage [2; 5; 9; 14].

In a primitive approach, we could rely on the system that supports the WfMS. In
fact, most of the commercially available DBMS on the market implement the neces-
sary transaction processing mechanisms to react in case of failure, returning the sys-
tem to a coherent state and enabling forward execution [2]. On the other hand, some
tasks do not run in transactional environments and a typical task can span over a long
period of time. This is the complex environment of organizations where typical
DBMS solutions are not adequate [22].

Some suggestions to overcome these problems consider relaxing the ACID proper-
ties and incorporating compensation mechanisms for backward recovery and forward

execution, incorporating the flexibility required for workflow systems [16]. Several
researchers are working in these issues [6; 9; 11; 15]. A good survey of this area,
which became known as Extended Transaction Models (ETM), is presented by [22].

The error handling semantics of traditional transaction processing systems is also
too rigid for workflow [16; 22]. The handling of application failures based on transac-
tional approaches offer, in general, extreme and expensive solutions in terms of lost
work and should be avoided. Therefore, some application failures should then be
treated as expected exceptions [2].

Some other studies have proposed the adoption of dynamic and adaptive workflow
systems to react to exceptions during workflow execution. The operator, on the pres-
ence of an exception, could change the system by either creating a new path for the
exceptional process or change all the processes running on the system to the newly
created path. Some studies have been carried out to keep the system’s consistency and
correctness during/after the change, e.g., [1; 10; 18; 20].

[5; 6] recognized the fixed control sequence and the rigid compensation policy of
the ETM approach and developed the Event Condition Action (ECA) rules to de-
couple the detection and handling of exceptions from the system itself and to increase
flexibility. [3] describes a system to deal with expected exceptions based on ECA
rules. The language Chrimera-Exc is used to specify exceptions and augment the
WfMS characteristics to automatically detect and handle expected exceptions.

[17] describes a system using a Case Base Reasoning (CBR) scheme to derive pat-
terns for exception handling. The current exception is matched to a knowledge base
and the system determines the appropriate action to handle the specific case.

Despite all these efforts to automatically handle exceptions, the majority of authors
involved recognize the limits of the proposed solutions. They either recognize the
importance of interrupting the process and integrating some manual mechanism [9;
14], or explicitly state that in some situations the role of humans is crucial to collect
process specific data not available to the workflow system [2; 13; 17].

To complete this review, it is important to mention two other approaches introduc-
ing a broader perspective over workflow exceptions. [12] proposed an integrated
architecture of formal coordinated processes with informal cooperative processes. [21]
presents an approach focussed on organizational semantics. Petri nets, outside the
scope of the WfMS, define the reactions to the various types of exceptions, and should
be interpreted as a global organizational reaction to exceptions.

3 Integrated perspective
From the above discussion we can assume that accounting for all possible exceptions
requires an integrated approach, where different levels of the organizational system
affected by exceptions must be involved.

Depending on the cause and impact of the abnormal situation, a suitable recovery
mechanism at the most adequate level should be invoked. The operational level pro-
vides an environment for handling basic and application failures only, where the tradi-
tional transaction processing techniques can be sufficient to bring the system back to a
coherent state and continue execution without human intervention. Whenever these

techniques are not able to solve the problem, the event is propagated to the tactical
level, and the failure may be converted into an external exception.

At the tactical level, the WfMS may automatically handle expected exceptions in
many different ways. For instance, using ETM techniques [9]. The extensive work
done on adaptive workflow, which falls in this level, should increase the system flexi-
bility and augment its adaptation to real world situations in handling expected excep-
tions. At this level, human contribution is possible but limited to producing the infor-
mation necessary to have the system applying the exception handling techniques (e.g.
compensation, retry, ignore, etc).

Eventually, if none of the techniques implemented at this level are able to handle
the event, it should be propagated to the strategic level, where the attention of a hu-
man operator to an unexpected exception is raised.

Even though several authors present some ideas on how to incorporate human in-
volvement in exception handling, we believe that the problem has not yet been com-
pletely addressed. [9] describes the idea of a system that incorporates human interven-
tion in two possible modes: (1) ad hoc extension, where the user can suspend the exe-
cution of a task and choose alternative paths or change the execution model; and (2)
ad hoc refinement, where the user interrupts the task execution to execute one or more
activities and later on proceeds with the interrupted task. Even though the authors
integrate this model in their framework, we believe that it should be completed in
terms of the tools/methodologies available to help and support the user manipulating
the environment in which s/he operates.

In [17], a user-interface is provided to assist human intervention. The exceptions
tagged as requiring human intervention come to the attention of an expert that can
choose one candidate solution within the system proposals, or write a new solution. In
order to react to unexpected exceptions, the system is notified by an external signal
and generates an internal exception event. However, it is not clear how this mecha-
nism can be implemented for any particular type of unexpected exception. Moreover,
it is not foreseen any assistance mechanism to provide a general view of the situation
nor any support tool to change the model.

Note that although human participation is considered at both the tactical and strate-
gic levels, the strategic level envisages a more dramatic intervention in the WfMS.
This will be discussed in more detail in the next section.

4 Our Approach to a Solution
In our proposed system, the interaction between the WfMS and the user is supported
by the following components:

Event handler. This component is responsible for launching the recovery process
whenever an unexpected exception is detected. It interacts with the user in order to
display and manage any upstream and downstream exception propagations related
with the exception (e.g., a basic failure previously propagated as an external excep-
tion, or an employee exception subsequently propagated as a group exception). This
component also interacts with the WfMS to identify the target user. In order to facili-
tate this identification, by default, unexpected exceptions are classified as “estab-
lished” and “employee.”

Situation awareness. This component is responsible for gathering and displaying
to the user generic data about the workflow and engine status associated with the ex-
ception. In particular, it lists all tasks defined by the WfMS, their status and other
important details, like task goals. This component also allows the user to identify
which tasks are affected by the exception.

Problem characterization. This component employs the criteria defined by [21] to
obtain from the user the information necessary to classify (or reclassify) an exception
as a true, established or otherwise exception. It also allows the user characterizing the
organizational influence of the exception (employee, group or organizational level)
and identifying the relevant participants. A list of participants is gathered from the
WfMS.

Recovery Toolkit. Based on the situation awareness and problem characterization,
this component offers a collection of pre-defined actions, which can be combined by
the user to manipulate the process design, process execution and engine status. The
following collection of pre-defined actions is actually considered:
• Engine status – Start/terminate or suspend/continue several tasks; manipulate

process relevant data or workflow participants;
• Process execution – Support ad hoc extensions and ad hoc refinements to the

process instances affected by the exception; apply design changes according to
the specification;

• Design – Change one or several process definitions, either affected by this excep-
tion or not; define how and when the modifications are applied (one/all instances,
immediately or after completion).

Note that the user can execute, in any order, multiple actions in each one of the
above three categories. The heuristic used for proposing the best solutions according
to the characterization of exceptions is the following: otherwise exceptions are com-
monly handled by ad hoc extensions or refinements applied to the affected process
instances; established exceptions can be handled by instantiating already available
process definitions; and true exceptions require design changes and possibly cascading
the exception to other users. If, in the first two cases, the organizational influence of
the exception is the organization, the approach must be coordinated with other areas.

5 Project Status and Expected Results
We selected OpenSymphony [19] to implement our solution. OpenSymphony is an
open-source platform based on J2EE technology. The prototype consists of Enterprise
Java Beans (EJB) for functional components and web-tier components for front end –
all components are platform, database and application server independent.

The workflow specification uses a XML file rather than a graphical user interface,
which gives more flexibility to cope with changes in the process definitions. The
workflow engine is based on the concept of a finite state machine where each state is
represented by a combination of StepID and status. The engine supports Java-based
functions, BeanShell scripts, and Bean Scripting Framework scripts. Another type of
functions is triggered by outside sources and run under the system context.

Figure 3 shows the user interface implementing our exception handling approach.
The user interface highlights the four main components necessary to our approach.

The user can analyse the list of exception propagations in the Event Handler area, if
any. The interface allows analysing upstream and downstream exceptions, as well as
propagating the current exception.

In the Situation Awareness area, the user sees a list of all the tasks running on the
system (left side). Selecting the affected ones and pressing the right arrow button, they
are transferred to the right side. This way it is possible to identify all the currently
running tasks that are affected by the exception. Whenever necessary, the specific task
details, including its goals, can be viewed/edited.

The Problem Characterization area enables the selection of the exception character-
istics according to our approach. At this stage only the exceptionality and organiza-
tional influence are considered. The other four characteristics (handling delay, amount
of work, cause, and rule impact) can only be defined at the end of the exception han-
dling, for historical records. In the organizational influence zone there is an area that
changes according the selection, allowing to select an employee, group leader or or-
ganizational manager, respectively. This way someone is always associated with an
exception. There is also the possibility of sending emails to everyone involved.

Fig. 1 – Interface for exception handling

In the Recovery Toolkit area the user can decide the recovery action(s) to imple-
ment on this specific case. As noted before, any combination of the defined above
actions can be used for the particular case, although the system suggests some pre-
defined actions. On the type, action, and parameters columns the user selects one
option from a list.

A working prototype is currently being developed to implement the described
framework. We expect to test this prototype with a collection of simulated situations
to test the applicability, flexibility and robustness of the framework. A real world
situation should complete the study, raising issues not possible to predict in a simula-
tion (particularly concerning the usability of the prototype).

With this work we also expect to improve the OpenSymphony platform, allowing
the workflow components to cope with unexpected exceptions.

References
1. Aalst, W.v.d., 1999. Generic workflow models: how to handle dynamic change and capture

management information. Int. Conf. on Cooperative Information Systems, pp. 115 -126.
2. Casati, F., 1998. Models, Semantics, and Formal Methods for the Design of Workflows and

their Exceptions. PhD Thesis, Politecnico di Milano.
3. Casati, F., Ceri, S., Paraboschi, S., and Pozzi, G., 1999. Specification and Implementation

of Exceptions in Workflow Management Systems. ACM Transactions on Database Sys-
tems, 24(3): 405-451. ACM Press.

4. Chiu, D.K., 2000. Exception Handling in an Object-oriented Workflow Management Sys-
tem. PhD Thesis, Hong Kong University of Science and Technology.

5. Dayal, U., Hsu, M., and Ladin, R., 1990. Organizing Long-Running Activities with Triggers
and Transactions. Int. Conf. on Management of Data SIGMOD’90, NJ, USA.

6. Dayal, U., Hsu, M., and Ladin, R., 1991. A Transactional Model for Long-Running Activi-
ties. 17th Int. Conf. on Very Large Data Bases (VLDB'91). Barcelona, Spain.

7. Eder, J., and Liebhart, W., 1995. The Workflow Activity Model WAMO. Int. Conf. on
Cooperative Information Systems, Vienna, Austria.

8. Eder, J., and Liebhart, W., 1996. Workflow Recovery. 1st IFCIS Intl. Conf. on Cooperative
Information Systems (CoopIS'96). IEEE, Brussels, Belgium, pp. 124 - 134.

9. Eder, J., and Liebhart, W., 1998. Contributions to Exception Handler in Workflow Man-
agement. EDBT'98, Workshop on Workflow Management Systems. Valencia, Spain.

10. Ellis, C., Keddara, K., and Rozenberg, G., 1995. Dynamic change within workflow sys-
tems. Proc. of Conf. Organizational Computing Systems, Milpitas, CA, USA, pp. 10-21.

11. Georgakopoulos, D., Hornick, M., and Manola, F., 1996. Customizing Transaction Models
and Mechanisms in a Programmable Environment Supporting Reliable Workflow Automa-
tion. IEEE Transactions on Knowledge and Data Engineering, 8(4): 630-649

12. Guimarães, N., Antunes, P., and Pereira, A.P., 1997. The Integration of Workflow Systems
and Collaboration Tools. In: A.K. Dogaç, Leonid Ozsu (Editor), Advances in Workflow
Management Systems and Interoperability. Instambul.

13. Heinl, P., 1998. Exceptions During Workflow Execution. EDBT'98, Workshop on Work-
flow Management Systems. Valencia, Spain.

14. Klein, M., and Dellarocas, C., 2000. A Knowledge-Based Approach to Handling Excep-
tions in Workflow Systems, CSCW, 9(3): 399-412. Kluwer Academic Publishers.

15. Krishnakumar, N., and Sheth, A.P., 1995. Managing Heterogeneous Multi-system Tasks to
Support Enterprise-wide Operations. Distributed and Parallel Database Systems, 3(2).

16. Luo, Z., 2001. Knowledge sharing, Coordinated Exception Handling, and Intelligent Prob-
lem Solving for Cross-Organizational Business Processes. PhD Thesis, Dep. of Computer
Sciences, University of Georgia.

17. Luo, Z., Sheth, A.P., Kochut, K., and Arpinar, I., 2002. Exception Handling for Conflict Reso-
lution in Cross-Organizational Workflows, LSDIS Lab, Computer Science, Un. of Georgia.

18. Myers, K.L., and Berry, P.M., 1999. At the Boundary of Workflow and AI. Proc. of the
AAAI-99 Workshop on Agent-Based Systems in The Business Context Held.

19. The OpenSymphony project. Http://www.opensymphony.com, 2001, 20-04-2003.
20. Reichert, M., and Dadam, P., 1998. ADEPTflex - Supporting Dynamic Changes of Work-

flows Without Loosing Control. Journal of Intelligent Information Systems, 10(2): 93-129.
21. Saastamoinen, H., 1995. On the Handling of Exceptions in Information Systems. Univer-

sity of Jyväskylä, PhD Thesis, University of Jyväskylä.
22. Worah, D., and Sheth, A.P., 1997. Transactions in Transactional Workflows. In: S.K. Jajodia,

Larry (Ed.), Advanced Transaction Models and Architectures. Kluwer Academic Publishers.

